Интернет-журнал дачника. Сад и огород своими руками

Как рассчитать показатель преломления. Что такое показатель преломления стекла? И когда его необходимо знать

Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

или, что то же самое, зависимость фазовой скорости световых волн от частоты:

Дисперсией вещества называется производная от n по

Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны
l вблизи одной из полос поглощения ()

Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


Рис. 6.9. Возникновение радуги

Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


Рис. 6.10. Расположение радуги

Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

Атом со смещенным электроном приобретает дипольный момент

(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

С другой стороны, как известно,

где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

В результате получаем выражение для квадрата показателя преломления вещества:

Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

Учитывая связь частоты с длиной электромагнитной волны в вакууме

можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.

Свет по своей природе распространяется в различных средах с различными скоростями. Чем плотнее среда, тем ниже скорость распространения в ней света. Была установлена соответствующая мера, имеющая отношение как к плотности материала, так и к скорости распространения света в этом материале. Эту меру назвали показателем преломления. Для любого материала показатель преломления измеряется относительно скорости распространения света в вакууме (вакуум часто называют свободным пространством). Следующая формула описывает это отношение.

Чем выше показатель преломления материала, тем он плотнее. Когда луч света проникает из одного материала в другой (с другим показателем преломления), угол преломления будет отличаться от угла падения. Луч света, проникающий в среду с меньшим показателем преломления, будет выходить с углом, большим угла падения. Луч света, проникающий в среду с большим показателем преломления, будет выходить с углом, меньшим угла падения. Это показано на рис. 3.5.

Рис. 3.5.а. Луч, проходящий из среды с высоким N 1 в среду с низким N 2

Рис. 3.5.б. Луч, проходящий из среды с низким N 1 в среду с высоким N 2

В данном случае θ 1 является углом падения, а θ 2 - углом преломления. Ниже пеоечислены некоторые типичные показатели преломления.

Любопытно отметить, что для рентгеновских лучей показатель преломления стекла всегда меньше, чем для воздуха, поэтому они при прохождении из воздуха в стекло отклоняют в сторону от перпендикуляра, а не к перпендикуляру, как световые лучи.

Есть ничто иное, как отношение синуса угла падения к синусу угла преломления

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Величина n, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

В таблице приведены некоторые значения показателя преломления для некоторых сред:

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой:

Показатель преломления зависит от длины волны света, то есть от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике.

ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ (преломления коэффициент) - оптич. характеристика среды, связанная с преломлением света на границе раздела двух прозрачных оптически однородных и изотропных сред при переходе его из одной среды в другую и обусловленная различием фазовых скоростей распространения света и в средах. Величина П. п., равная отношению этих скоростейназ. относительным

П. п. этих сред. Если свет падает на вторую пли первую среду из (где скорость распространения света с) , то величинынназ. абсолютными П. п. данных сред. При этом а закон преломления может быть записан в виде где и- углы падения и преломления.

Величина абсолютного П. п. зависит от природы и строения вещества, его агрегатного состояния, темп-ры, давления и др. При больших интенсивностях П. п. зависит от интенсивности света (см. Нелинейная оптика) . У ряда веществ П. п. изменяется под действием внеш. электрич. поля (Керра эффект - в жидкостях и газах; электрооптич. Поккельса эффект - в кристаллах).

Для данной среды П. п. зависит от длины волны света l, причём в области полос поглощения эта зависимость носит аномальный характер (см. Дисперсия света ).В рентг. области П. п. практически для всех сред близок к 1, в видимой области для жидкостей и твёрдых тел - порядка 1,5; в ИК-области для ряда прозрачных сред 4,0 (для Ge).

Характеризуются двумя П. п.: обыкновенным (аналогично изотропным средам) и - необыкновенным, величина к-рого зависит от угла падения луча и, следовательно, направления распространения света в среде (см. Кристаллооптика ).Для сред, обладающих поглощением (в частности, для металлов), П. п. является комплексной величиной и может быть представлен в виде где га - обычный П. п., - показатель поглощения (см. Поглощение света, Металлооптика) .

П. п. является макроскопич. характеристикой среды и связан с её диэлектрической проницаемостью н магн. проницаемостью Классич. электронная теория (см. Дисперсия света )позволяет связать величину П. п. с микроскопич. характеристиками среды - электронной поляризуемостью атома (или молекулы) зависящей от природы атомов и частоты света, и среды: где N - число атомов в единице объёма. Действующее на атом (молекулу) электрич. полесветовой волны вызывает смещение оптич. электрона из положения равновесия; атом приобретает индуциров. дипольный момент изменяющийся во времени с частотой падающего света, и является источником вторичных когерентных волн, к-рые. интерферируя с падающей на среду волной, образуют результирующую световую волну, распространяющуюся в среде с фазовой скоростьюи потому

Интенсивность обычных (не лазерных) источников света относительно невелика, напряжённость электрич. полясветовой волны, действующего на атом, много меньше внутриатомных электрич. полей, и электрон в атоме можно рассматривать как гармонич. осциллятор. В этом приближении величина и П. п.

Являются величинами постоянными (на данной частоте), не зависящими от интенсивности света. В интенсивных световых потоках, создаваемых мощными лазерами, величина электрич. поля световой волны может быть соизмерима с внутриатомными элект-рич. полями и модель гармония, осциллятора оказывается неприемлемой. Учёт ангармоничности сил в системе электрон - атом приводит к зависимости поляризуемости атомаа следовательно и П. п., от интенсивности света. Связь межу иоказывается нелинейной; П. п. может быть представлен в виде

Где - П. п. при малых интенсивностях света; (обычно принятое обозначение) - нелинейная добавка к П. п., или коэф. нелинейности. П. п. зависит от природы среды, напр. для силикатных стёкол

На П. п. влияет высокая интенсивность ещё и в результате эффекта электрострикции , изменяющего плотность среды, высокочастотного для анизотропных молекул (в жидкости), а также в результате повышения темп-ры, вызванного поглощением

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

Похожие публикации