Интернет-журнал дачника. Сад и огород своими руками

Механические колебания. Свободные, затухающие и вынужденные колебания. Московский государственный университет печати Затухающие и вынужденные колебания резонанс

Во всякой реальной колебательной системе обычно имеют место силы трения (сопротивления), действие которых приводит к уменьшению энергии системы. Сила трения выражается формулой:

где r – коэффициент трения, а знак минус указывает, что на­правление силы всегда противоположно скорости движения.

Если силы трения отсутствуют, формула (2.4) дает диффе­ренциальное уравнение:

которое имеет, решение в виде:

где ω 0 = . Колебания, происходящие при отсутствии сил трения, называются собственными или свободными. Частота собственных колебаний зависит только от свойств системы.

Допустим теперь, что в системе действуют две силы: F УПР и F ТР. Уравнение движения тела будет иметь вид:

Разделим это уравнение на массу тела и обозначим: .

Тогда получим дифференциальное уравнение затухающих колебаний, энергия которых уменьшается с течением времени:

Этому уравнению удовлетворяет функция: х = А 0 е - d t Cos (wt + j 0),

где Значит, сейчас уже частота колебания зависит от , и . Амплитуда колебания будет с течением време­ни изменяться по экспоненциальному закону . Величина , определяющая быстроту убывания амплитуды колебания с течением времени, называется коэффициентом затухания. Произ­ведение коэффициента затухания на период колебания T, равное логарифму отношения двух соседних амплитуд:

есть безразмерная величина, и называется логарифмическим декре­ментом затухания. Колебания, происходящие в системе при нали­чии сил трения, называются затухающими. Частота этих колебаний зависит от свойств системы и интенсивности потерь (с их увеличением частота уменьшается). Для получения незату­хающих колебаний система должна подвергаться действию еще и внешней силы, непрерывно изменяющейся со временем по какому-нибудь закону. В частности, предположим, что внешняя сила явля­ется синусоидальной:

тогда уравнение движения тела будет иметь вид:

Разделим это уравнение на массу тела и к ранее принятым обозна­чениям добавим . В этом случае уравнение примет вид:

Уравнение характеризует уже вынужденные незатухающие ко­лебания под действием внешней периодической силы. Решение этого уравнения имеет вид:

x = A Cos (ωt-φ),

где А – амплитуда колебания, φ – фаза, равная: φ = аrctg .

Амплитуда вы­нужденных колебаний системы:

где – угловая частота собственных колебаний системы; угловая частота вынуждающей силы.

При вынужденных колебаниях имеет место явление резонан­са, вызывающее резкое увеличение амплитуды вынужденных колеба­ний при совпадении собственной угловой частоты колебаний и уг­ловой частоты вынуждающей силы. Поскольку вынужденные колеба­ния имеют широкое применение в технике, то явление резонанса должно всегда учитываться, ибо оно может быть полезным в от­дельных процессах, а может быть и опасным явлением.



Важное место в машиностроении занимают вибрации (от лат. vibratio – колебание) – меха­нические колебания упругих тел различной формы. Это понятие обычно применяется по отношению к механическим колебаниям дета­лей машин, конструкций и сооружений, рассматриваемых в инженер­ном деле.

Раздел 5. Физика волновых процессов

19. Затухающие колебания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются линейными дифференциальными уравнениями.

Различные по своей природе линейные системы описываются одинаковыми уравнениями , что позволяет осуществлять единый подход к изучению колебаний различной физической природы.

20.Дифференциальное уравнение свободных затухающих колебаний линейной системы

Дифференциальное уравнение свободных затухающих колебаний

линейной системы имеет вид

где s- колеблющаяся величина,

- коэффициент затухания,

ω 0 - циклическая частота свободных незатухающих колебаний той же колебательной системы (при ).

В случае малых затуханий ( ) решение этого уравнения:

- амплитуда зату­хающих колебаний,

А 0 - начальная амплитуда,

- циклическая частота затухающих колебаний.

Промежуток времени , в течение которого амплитуда затухающих о

колебаний уменьшается в е раз называется временем релаксации.



Затухание нарушает периодичность колебаний.

Затухающие колебания не являются периодическими.

Однако если затухание мало, то можно условно пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины:

Если A(t) и A(t + T) - амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

называется декрементом затухания, а его логарифм

называется логарифмическим декрементом затухания.

Здесь N - число колебаний, совершаемых за время уменьшения амплитуды в е раз.

22.Добротность колебательной системы.

Добротностью колебательной системы называется безразмерная величина Q, равная произведению на отношение энергии W(t) колебаний системы в произвольный момент времени t к убыли этой энергии за промежуток времени от t до t + T (за один условный период затухающих колебаний):

Энергия W(t) пропорциональна квадрату амплитуды А(t), поэтому:

При малых значениях логарифмического декремента затухания ( << 1)

Поэтому (принимая Т ≈Т 0)

Волны в упругой среде.

23.Волновой процесс.

Если возбудить колебания в какой-либо точке среды (твердой, жидкой или газообразной) то, вследствие взаимодействия между частицами среды, эти колебания будут передаваться от одной точки среды к другой со скоростью, зависящей от свойств среды.

При рассмотрении колебаний не учитывается детальное строение среды; среда рассматривается как сплошная, непрерывно распределенная впространстве и обладающая упругими свойствами.

Среда называется линейной, если ее свойства не изменяются под действием возмущений, создаваемых колебаниями.

Волновым процессом или волной - называется процесс распро­странения колебаний в сплошной среде.

При распространении волны частицы колеблются около своих положений равновесия, а не перемещаются вслед за волной.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.

Основным свойством всех волн является перенос энергии без переноса вещества .

24.Упругие волны.

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

Продольная волна - волна, в которой частицы среды колеблются в направлении распространения волны .

Поперечная волна - волна, в которой частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения (в твердых, жидких и газообразных телах).

Поперечные волны могут распространяться только в среде, в которой возникают упругие силы при деформации сдвига (только в твердых телах).

36. Упругая гармоническая волна.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

Пусть гармоническая волна распространяется со скоростью υ вдоль оси ОХ. Обозначим смещения частиц среды через

Для данного момента времени t зависимость между смещением частиц среды и расстоянием х этих частиц от источника колебаний О можно представить в виде графика волны.

Отличие графика волны от графика гармонического колебания:

1) график волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний вданный момент времени ;

2) график гармонического колебания это зависимость смещения данной частицы от времени

Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний Т:

где п - частота колебаний, υ - скорость распространения волны.

Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени - один.

37.Бегущие волны.

Бегущими волнами называются волны, которые переносят в пространстве энергию.

Перенос энергии количественно характеризуется вектором плотности потока энергии (вектор Умова ). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.

Важными примерами бегущих волн являются плоская и сферическая волны.

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Волна называется сферической, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются центром волны.

25.Уравнение плоской волны.

Пусть точки, которые расположены в плоскости х = 0, колеблются по закону . И пусть υ- скорость распространения колебаний в данной среде.

Колебания частицы В среды (см. рисунок), расположенной на расстоянии х от источника колебаний О, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния х требуется время , то ее колебания будут отставать по времени от колебания источника на τ.

Уравнение колебаний частиц, лежащих вплоскости х, имеет вид

Следовательно, функция является не только периодической функцией времени , но и периодической функцией координаты х.

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

здесь: А = const - амплитуда волны,

ω - циклическая частота,

- начальная фаза волны,

- фаза плоской волны.

Если определить волновое число:

то уравнение плоской бегущей волны можно записать в виде

или в экспоненциальной форме

где физический смысл имеет только вещественная часть.

В общем виде уравнение плоской волны, распространяющейся в направлении имеет вид:

25.Фазовая скорость.

Скорость в этих уравнениях есть скорость распространения фазы волны и ее называют фазовой скоростью.

Действительно, пусть в волновом процессе фаза постоянна:

26. Уравнение сферической волны.

где r - расстояние от центра волны до рассматриваемой точки среды. Амплитуда колебаний в сферической волне убывает с расстоянием по закону .

27 . Волновое уравнение.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением - дифференциальным уравнением в частных производных:

или

где υ - фазовая скорость,

- оператор Лапласа.

Решением волнового уравнения является уравнение любой волны (в том числе и плоская и сферическая волны).

Волновое уравнение для плоской волны, распространяющейся вдоль оси х :

28.Принцип суперпозиции.

Если среда, в которой распространяется одновременно несколько волн, линейна, то к этим волнам применим принцип суперпозиций (наложения) волн:

при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвующие в каждом из слагающих волновых процессов.

29.Групповая скорость.

Любое сложное колебание может быть представлено в виде суммы одновременно совершающихся гармонических колебаний (разложение Фурье).

Поэтому любая волна может быть представлена в виде суммы гармонических волн, то есть в виде волнового пакета или группы волн.

Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

За скорость распространения волнового пакета принимают скорость перемещения максимума его амплитуды (центра волнового пакета).

Групповой скоростью и называется скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет (или скорость движения центра волнового пакета).

Ее величина

Связь групповой и фазовой скоростей:

30. Интерференция волн.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Две волны называются когерентными , если разность их фаз не зависит от времени.

Гармонические волны, имеющие одинаковую частоту, когерентны всегда.

Интерференцией волн называется явление наложения волн , при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками, колеблющимися с одинаковыми амплитудой , частотой ωи постоянной разностью фаз:

,

где и - расстояния от источников до рассматриваемой точки, k -

волновое число, - начальные фазы волн.

Амплитуда результирующей волны

Поскольку для когерентных источников , то результат интерференции двух волн зависит от величины , называемой разностью хода.

Интерференционный максимум наблюдается в точках, где

Числа называются порядком интерференционного максимума.

наблюдается в точках,

Интерференционный минимум наблюдается в точках, где .

Числа называются порядком интерференционного минимума.

31. Стоячие волны.

Особым случаем интерференции являются стоячие волны.

Стоячие волны - это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Пусть две плоские бегущие волны с одинаковыми амплитудами и частотами распространяются навстречу друг другу вдоль оси х :

,

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн. Эту

величину называют длиной стоячей волны: .

В бегущей волне В стоячей волне
Амплитуда колебаний
все точки волны совершают колебания с одинаковой амплитудой разными амплитудами
Фаза колебаний
фаза колебаний зависит от коор­динаты х рассматриваемой точки все точки между двумя узлами колеблются с одинаковыми фазами
при переходе через узел фаза колебаний изменяется на π ; точки лежащие по разные стороны от узла колеблются в противофазе
Перенос энергии
энергия колебательного движе­ния переносится в направлении распространения бегущей волны переноса энергии нет, лишь впределах происходят взаимные превращения кинетической энергии в потенциальную и обратно

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн.

менее плотная пучность.

Если среда, от которой происходит отражение, более плотная , то на границе сред образуется узел стоячей волны.

32. Эффект Доплера.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. В акустике эффект Доплера проявляется как повышение тона при приближении источника звука к приемнику и понижения тона звука при удалении источника от приемника.

Пусть источник и приемник звука движутся вдоль соединяющей их прямой; - скорости источника и приемника (положительны при сближении и отрицательны при удалении источника и приемника);

Скорость распространения колебаний υ зависит только от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние . Источник же пройдет расстояние . Поэтому к моменту окончания излучения волны длина волны в направлении движения сократится и станет . Частота колебаний которые воспринимает приемник, увеличится:


Движения, обладающие той или иной степенью повторяемости, называются колебаниями. Если колебания повторяются через равные промежутки времени, то они называются периодическими. В зависимости от физической природы колебательного процесса и «механизма» его возбуждения различают механические и электромагнитные колебания. Гармонические – это такие колебания, которые описываются периодическим законом или (1)

где – периодически изменяющаяся величина (смещение, скорость, сила и т.д.). Система, закон движения которой имеет вид (1), называется одномерным (линейным) классическим гармоническим осциллятором или сокращенно гармоническим осциллятором .

Амплитуда А, определяющая размах колебаний, равна абсолютному значению наибольшего отклонения от значения в состоянии равновесия. Аргумент синуса или косинуса называется фазой колебания, – начальная фаза. –частота колебаний, численно равная числу колебаний, совершаемых за единицу времени. Частота, при которой за 1с совершается одно полное колебание, называется герцем (Гц).Т – период – время, за которое совершается одно полное колебание.

Система, совершающая колебания, называется маятником .

Пружинный маятник имеет период , где m – масса тела, закрепленного на пружине жесткостью k . .Математический маятник – это модель, в которой вся масса сосредоточена в материальной точке, колеблющейся на невесомой и недеформируемой нити длиной . Период колебаний: . Физический маятник – образует твердое тело, подвешенное в поле тяжести на закрепленной горизонтальной оси. Период колебаний физического маятника: , где J – момент инерции маятника относительно оси, m – масса тела, – расстояние от оси до центра тяжести тела.

Свободными (собственными) называются колебания, которые происходят в отсутствие переменных внешних воздействий на колебательную систему. Они возникают вследствие какого-либо начального отклонения этой системы от состояния ее устойчивого равновесия.

Рассмотрим смещение x колеблющегося тела относительно положения равновесия, то есть . Начало отсчета времени выберем так, чтобы =0. Уравнение гармонического колебания: , причем А и w – величины постоянные.

Первая производная от по времени дает выражение для скорости движения тела: ; (2)

Уравнения (2) показывают, что скорость, как и смещение, изменяются по гармоническому закону с той же частотой w, но ее фаза отличается от фазы смещения на p/2, то есть когда =0, то .

Ускорение изменяется со временем также по гармоническому закону:

, (3)

где – максимальное значение ускорения. Фаза ускорения отличается от фазы смещения на p, а от скорости на p/2. Из (3) следует. что значение ускорения в процессе колебательного движения равно:

Таким образом, при гармоническом колебательном движении ускорение тела прямо пропорционально смещению от положения равновесия и имеет противоположный ему знак. Уравнение (4) можно переписать в виде: (5)

Это и есть дифференциальное уравнение гармонических колебаний. Если изменяется со временем согласно формуле (1), то оно удовлетворяет дифференциальному уравнению (5). Верно и обратное утверждение.

Реально свободные колебания под действием сил сопротивления всегда затухают . Пусть точка совершает линейное гармоническое колебание в вязкой среде. При малых скоростях: , где r – постоянная величина, называемая коэффициентом сопротивления среды. Уравнение колебаний: . Введем обозначения: , тогда дифференциальное уравнение затухающего колебания: (6)

где – коэффициент затухания, w 0 – собственная частота колебания. При отсутствии трения =0, уравнение примет вид уравнения для свободных незатухающих колебаний. В результате решения уравнения (6) получим зависимость смещения х от времени, то есть уравнение затухающего колебательного движения:

Выражение называется амплитудой затухающего колебания. Амплитуда уменьшается с течением времени и тем быстрее, чем больше коэффициент затухания. Огибающая на графике зависит от . Чем она больше, тем круче огибающая, то есть колебания быстрее затухают.

Путем подстановки функции (2) и ее производных по времени в уравнение (1), можно найти значение угловой частоты: . Период затухающих колебаний равен: .

Наглядной характеристикой затухания является отношение значений двух амплитуд, соответствующих промежутку времени в один период. Это отношение называют декрементом затухания : Его логарифм есть безразмерная величина, называемая логарифмическим декрементом затухания:

Колебания системы, которые совершаются за счет работы периодически меняющейся внешней силы, называются вынужденными.

Пусть на систему действует внешняя сила, меняющаяся со временем по гармоническому закону: , где F 0 – амплитуда силы (максимальное значение), w – угловая частота колебаний вынуждающей силы. Тогда уравнение движения будет иметь вид.

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Так как энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (рис. 53; х - смещение, t - время). Когда вся энергия колебания перейдет в теплоту, колебание прекратится (затухнет). Такого рода колебания называются затухающими.

Для того чтобы система совершала незатухающие колебания, необходимо восполнять извне потери энергии колебания на трение. Для этого надо воздействовать на систему периодически изменяющейся силой

где амплитудное (максимальное) значение силы, круговая частота колебаний силы, время. Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынуждающей силой, а колебания системы - вынужденными. Очевидно, что вынужденные колебания происходят с частотой, равной частоте вынуждающей силы. Определим амплитуду вынужденных колебаний.

Для упрощения расчета пренебрежем силой трения, полагая, что на колеблющееся тело действуют только две силы: вынуждающая и возвращающая Тогда, согласно второму закону Ньютона,

где - масса и ускорение колеблющегося тела. Но, как было показано в § 27, Тогда

где смещение колеблющегося тела. Согласно формуле (9),

где - круговая частота собственных колебаний тела (т. е. колебаний, обусловленных только действием возвращающей силы). Поэтому

Из уравнения (22) следует, что амплитуда вынужденного колебания

зависит от соотношения круговых частот вынужденного и собственного колебаний: при будет В действительности благодаря трению амплитуда вынужденных колебаний

остается конечной. Она достигает максимального значения в том случае, когда частота вынужденных колебаний близка к частоте собственных колебаний системы. Явление резкого возрастания амплитуды вынужденных колебаний при называется резонансом.

Используя резонанс, можно посредством небольшой вынуждающей силы вызвать колебание с большой амплитудой. Подвесим, например, карманные или ручные часы на нити такой длины, чтобы частота собственных колебаний полученного физического маятника (рис. 54) совпала с частотой колебаний балансира часового механизма. В результате часы сами начнут колебаться, отклоняясь от положения равновесия на угол а 30°.

Явление резонанса имеет место при колебаниях любой природы (механических, звуковых, электрических и др.). Оно широко используется в акустике - для усиления звука, в радиотехнике - для усиления электрических колебаний и т. п.

В некоторых случаях резонанс играет вредную роль. Он может вызвать сильную вибрацию конструкций (зданий, опор, мостов и т. п.) при работе установленных на этих конструкциях механизмов (станков, моторов и т. п.). Поэтому при расчете сооружений необходимо обеспечивать значительное различие между частотами колебаний механизмов и собственных колебаний конструкций.

В технике распространен еще один вид незатухающих колебаний - так называемые автоколебания, отличающиеся от вынужденных тем, что у них потери энергии колебания восполняются за счет постоянного источника энергии, вводимого в действие на очень короткие промежутки времени (в сравнении с периодом колебаний). Причем этот источник «включается» в нужные моменты времени автоматически самой колебательной системой. Примером автоколебательной системы может служить часовой маятник. Здесь потенциальная энергия приподнятого груза (или деформированной пружины) вводится в действие посредством анкерного механизма. Другим примером может служить замкнутый колебательный контур с электронной лампой; с действием этой автоколебательной системы мы познакомимся позже (см. § 112).

Затуханием колебаний называют уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой (например, превращение энергии колебаний в теплоту вследствие трения в механических системах). Затухание нарушает периодичность колебаний, потому они уже не являются периодическим процессом. Если затухание мало, то можно условно пользоваться понятием периода колебаний – Т (на рисунке 7.6 А 0 – начальная амплитуда колебаний).

Рисунок 7.6 – Характеристики затухающих колебаний

Затухающие механические колебания пружинного маятника происходят под действием двух сил: силы упругости и силы сопротивления:

где r – коэффициент сопротивления.

Воспользовавшись уравнением второго закона Ньютона, можно получить:

или

Разделим последнее уравнение на m и введем обозначение или

где β коэффициент затухания, тогда уравнение примет вид

(7.20)

Данное выражение и есть дифференциальное уравнение затухающих колебаний. Решением этого уравнения является

Отсюда следует экспоненциальный характер затухающих колебаний, т.е. амплитуда колебаний убывает по экспоненциальному закону (рисунок 7.6):

(7.22)

Относительное уменьшение амплитуды колебаний за период характеризуется декрементом затухания, равным

(7.23)

или логарифмическим декрементом затухания:

(7.24)

Коэффициент затухания β обратно пропорционален времени τ в течение которого амплитуда колебаний уменьшается в e раз:

т.е. (7.25)

Частота затухающих колебаний всегда меньше частоты собственных колебаний и может быть найдена из выражения

(7.26)

где ω 0 частота собственных колебаний системы.

Соответственно период затухающих колебаний равен:

Или (7.27)

С увеличением трения период колебаний возрастает, а при период .

Для получения незатухающих колебаний необходимо воздействие дополнительной переменной внешней силы, которая подталкивала бы материальную точку то в одну, то в другую сторону и работа которой непрерывно бы восполняла убыль энергии, затрачиваемой на преодоление трения. Такая переменная сила называется вынуждающей F вын, а возникающие под ее действием незатухающие колебания – вынужденными .

Если вынуждающая сила изменяется в соответствием с выражением, то уравнение вынужденных колебаний примет вид

(7.28)

(7.29)

где ωциклическая частота вынуждающей силы.

Это дифференциальное уравнение вынужденных колебаний . Реше­ние его может быть записано в виде

Уравнение описывает гармоническое колебание, происходящее с частотой, равной частоте вынуждающей силы, отличающееся по фазе на φотносительно колебаний силы.

Амплитуда вынужденного колебания:

(7.30)

Разность фаз между колебаниями силы и системы находится из вы­ражения

(7.31)

График вынужденных колебаний приведен на рисунке 7.7.

Рисунок 7.7 – Вынужденные колебания

При вынужденных колебаниях может наблюдаться такое явление, как резонанс. Резонанс это резкое возрастание амплитуды колебаний системы.

Определим условие, при котором наступает резонанс, для этого рас­смотрим уравнение (7.30). Найдем условие, при котором амплитуда при­нимает максимальное значение.

Из математики известно, что экстремум функции будет, когда про­изводная равна нулю, т.е.

Дискриминант равен

Следовательно

После преобразования получаем

Следовательно резонансная частота.

В простейшем случае резонанс наступает, когда внешняя периоди­ческая сила F меняется с частотой ω , равной частоте собственных колеба­ний системы ω = ω 0 .

Механические волны

Процесс распространения колебаний в сплошной среде, периодический во времени и пространстве, называется волновым процессом или волной .

При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством волн, независимо от их природы, является перенос энергии без переноса вещества .

Выделяют следующие типы волн:

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. В любой упругой волне одновременно существуют два вида движения: колебание частиц среды и распространение возмущения.

Волна, в которой колебания частиц среды и распространение волны происходят в одном направлении, называется продольной , а волна, в которой частицы среды колеблются перпендикулярно направлению распространения волны, называется поперечной .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформациях сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. в твердых телах. Таким образом, в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

Упругая волна называется синусоидальной (или гармонической), если соответствующие ей колебания частиц среды являются гармоническими.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ .

Длина волны равна расстоянию, на которое распространяется волна за время, равное периоду колебаний:

где – скорость распространения волны.

Так как (где ν частота колебания), то

Геометрическое место точек, до которых доходят колебания к моменту времени t , называется волновым фронтом . Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью .

Похожие публикации