Интернет-журнал дачника. Сад и огород своими руками

Волновая электростанция. Волновая электростанция: принцип работы

Сегодня главными источниками энергии считаются углеводородное сырье – нефть, уголь, газ. Как показывают исследования, угольных залежей при нынешних темпах добычи будет достаточно еще на 4 столетия, а залежи нефти и газа истощатся через 4 десятка и 6 десятков лет соответственно.

Подобное скорое сокращение количества полезных ископаемых требует поиска других методов добычи энергии. Самым многообещающим видом является такой вид гидроэнергетики как волновая.

Единая структура станций волновой энергетики

Станция волновой энергетики – это строение, находящееся на воде, способное за счет волн вырабатывать электрическую энергию. При их возведении необходимо считаться с двумя обстоятельствами:

Энергия движения волн. Волны, направляющиеся в коллектор значительной окружности, заставляют вращаться лопасти турбин, приводящие в рабочее состояние генератор. Существует и другой способ – волна движется сквозь открытую емкость, вытесняя сжатый воздух, вынуждает двигатель работать.

Энергия поверхностного качения. Здесь получение электроэнергии случается благодаря преобразователям - поплавкам, которые следят за направлением волны, находясь на плоскости воды.

Существуют следующие типы подобных поплавков:

Утка «Солтера» - подразумевает огромное число поплавков, которые установлены на одном валу. Для большей результативности данного вида поплавка нужно прикрепить на вал их до 30 штук.

Плот Коккереля представляет собой строение из 4 ячеек, имеющих соединение посредством шарнир, которые движутся из-за силы волн и заставляют работать гидроцилиндрические устройства, обеспечивающие деятельность генераторов.

Преобразователи Pelamis навеваются еще морскими змеями, сегменты в виде цилиндров соединяются шарнирным способом и под действием вол созданная «змея» изгибается, заставляя работать гидравлические поршни.

Достоинства и недостатки гидроэнергетики волн

Сегодня всего только 1% добываемой электрической энергии относится к гидроэнергетике волн, но их ресурсы огромны. Незначительное применение станций волновой энергетики объясняется дорогостоящей на выходе энергией.

Минусами применения станций волновой энергетики являются определенные условия:

Экологические. Огромное число преобразователей волн способно нанести вред экологической системе, потому что волны оказывают значительное влияние на газообмен океана и атмосферы, на очищение поверхности воды от засорений.

Социально-экономические. Определенные виды генераторов, используемые в гидроэнергетике волн, могут нанести вред судоходству. Что повлияет на работу рыбаков, которым придется покинуть крупные рыбопромышленные места.

Однако волновые электростанции помимо минусов имеют и ряд определенных достоинств:

  1. станции могут выступать в качестве волногасителей, а значит, способны защитить берега от разломов и обвалов;
  2. можно расположить волновые электрогенераторы небольшой мощности на конструкциях мостов, причалов, сокращая действие на них;
  3. значительное преимущество перед ветровой энергетикой;
  4. электроэнергия получаемая благодаря морским волнам не завит и не нуждается в углеводородном сырье, залежи которых значительно сокращаются.

Важнейшей целью создателей станций волновой энергетики является модернизация его постройки таким способом, чтобы ощутимо сократить себестоимость производимого электричества.

Территориальное возведение волновых электростанций

Возведение волновых электростанций малых мощностей используется для питания электроэнергией маленьких объектов:

Построек по береговой линии;

Малых селений;

Независимых маяков, буев;

Научных и исследовательских устройств;

Буковых установок.

Португалия

В районе Агусадора в 2008 году произошло значительное событие в гидроэнергетике – впервые начала свою работу волновая электростанция с мощностью 2,25 МВт. Разработкой занималась компания Pelamis Wave из Шотландии, которая подписала с Португалией договор на 8 млн. евро.

На данный момент на станции работают 3 преобразователя по типу змеи, которые на половину находятся в воде. Одна «змея» имеет длину в 120 метров, а весит 750 тонн. Сама станция располагается в 5 км от береговой линии, на нее по кабелям поступает электричество. На станции проводятся работы, способствующие росту мощности этой волновой станции до 21 МВт, в планах установить 25 дополнительных преобразователей, что позволит снабдить электричество 15 тысяч домов.

Норвегия

Появление волновых станций для промышленных целей зафиксировано в 85-м году XX века в Норвегии.

Эта станция – воздушное волновое сооружение, имеет мощность до 500 кВт. Ее опускают на самый низший слой поверхности воды.

В настоящее время находят практическое применение установки по использованию энергии волн в морях и океанах, суммарная мощность которых по различным методикам оценивается в более чем 100 млрд. кВт.

При средней высоте волн в Мировом океане 2,5 м и периоде 8 с удельный поток энергии, приходящийся на 1 м фронта волны, составляет 75 кВт/м. Удельный поток энергии ветровых волн, например, в морях стран СНГ (кВт/м): Азовское – 3, Черное – 6–8, Каспийское – 7–11, Охотское – 12–20, Берингово – 15–44, Баренцово – 22–29, Японское – 21–31, а суммарная мощность волн, набегающих на побережье (в пределах СНГ), составляет (млн.кВт): на Черном море – 14,7; Каспийском 67,5; Баренцевом – 56, Охотском – 129.

К положительным факторам волновой энергии относятся значительный суммарный потенциал, увеличение мощности в осенне-зимний период, когда растет потребление электроэнергии, а к недостаткам – ее прерывистость.

В разных странах эксплуатируется большое количество навигационных буев, использующих энергию волн. В 1985 г. в Норвегии были введены в строй и подключены к энергосистеме две первые в мире опытно-промышленные волновые электростанции.


Волновые гидроэнергетические установки состоят из трех основных частей – рабочего тела (или водоприемника), силового преобразователя с генератором электроэнергии и системы крепления.

Рабочее тело (твердое, жидкое или газообразное), непосредственно контактируя с водой, перемещается под действием волн или изменяет тем или иным образом условия их распространения. В качестве рабочего тела могут использоваться поплавки, волноприемные камеры, эластичные трубы, волноотбойные сооружения и другие.

Силовой преобразователь предназначен для преобразования энергии, запасенной рабочим телом (механической энергии движения твердого тела, перепада уровней воды в бассейнах, давления воздуха или жидкости), в энергию, пригодную для передачи на расстояние или для непосредственного использования. В качестве силовых преобразователей могут применяться гидравлические и воздушные турбины, водяные колеса, зубчатые или цепные передачи и другие устройства.



Система крепления обеспечивает удержание на месте волновой установки.

Различные типы волновых установок отличаются той составляющей энергии ветровых волн (разновидностью кинетической или потенциальной энергии), которую рабочее тело установки преобразует в другой вид энергии.

Одной из наиболее эффективных считается пневматическая волновая электростанция (рис. 2.28). Основной частью такой установки является камера, нижняя открытая часть которой погружена под наинизший уровень воды (ложбину волны). При поднятии и опускании уровня воды в море в камере происходит циклическое сжатие и расширение воздуха, движение которого через систему клапанов приводит во вращение воздушную турбину. Такая система широко применяется в мире для питания электроэнергией навигационных буев.

Одна из первых в мире волновых электростанций мощностью около 500 кВт в Норвегии также представляет собой пневматическую волновую установку, основной частью которой является камера с нижней открытой частью, погруженной под наинизший уровень поверхности воды.

Вторая из двух первых в мире волновых электростанций мощностью 450 кВт в Норвегии, использующая эффект набегания волны на отлогую суживающуюся поверхность (конфузорный откос), включает расположенный в фиорде суживающийся канал длиной 147 м с турбинным водоприемником, расположенным на 3 м выше среднего уровня моря. Установки такого типа, расположенные на берегу, имеют преимущества перед другими типами волновых установок, исключая трудности, связанные с их обслуживанием и ремонтом.

Одна из успешнейших на данный момент попыток эффективно перерабатывать энергию океанских волн – волновая электростанция «Oceanlinx» в акватории города Порт-Кембл (Австралия). Она была введена в эксплуатацию еще в 2005 году, затем была демонтирована для реконструкции и переоборудования и только в начале 2009 г. вновь запущена в действие.

Принцип ее работы заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. Из-за того, что направление движения волн и их сила постоянно меняются, на станции «Oceanlinx» используется турбина Denniss-Auld c регулируемым углом поворота лопастей. Одна силовая установка станции «Oceanlinx» обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.

В сентябре 2008 года в городке Агусадор (Португалия) для обеспечения местных жителей электроэнергией была введена в строй коммерческая волновая электростанция. Проект был создан английской компанией «Pelamis Wave Power», давно экспериментирующей с энергией океанов. Пока на станции работают только три преобразователя волновой энергии – змеевидных устройства, наполовину погруженных в воду. Диаметр каждого преобразователя – 3.5 метра, длина – 140 метров. Именно они конвертируют силу волн в электричество.

Принцип действия преобразователей прост: волны поднимают и опускают их секции, а внутренняя гидравлическая система сопротивляется движению, на основе чего вырабатывается электричество, которое по кабелям передается на берег.

Сейчас мощность станции 2,25 МВт. Спустя какое-то время будет добавлено еще 25 преобразователей и тогда мощность станции возрастет до 21 МВт, что достаточно для снабжения 15 тыс. домов.

Волны мира могут генерировать 2 тераватта энергии, что примерно в 2 раза превосходит объем всей производимой электроэнергии. Естественно, количество вырабатываемой энергии зависит от силы волн, которая, как известно, непостоянна во времени. Но ресурс, используемый волновой электростанцией, абсолютно возобновляемый.

Электростанция предназначена для выработки электроэнергии путем использования энергии волн. Устройство содержит плавучий корпус с электрогенератором и расположенные на горизонтальном валу поплавки. На разнесенных понтонах расположены поперечно параллельные друг другу эстакады с опорами под вал. На каждом валу установлены с минимальным зазором поплавки в виде полых полуцилиндров, снабженных дополнительным грузом и объемным выступом. При этом ближайшие параллельные валы соединены между собой зубчатой передачей. Валы, расположенные на одной линии по разные стороны от понтона с механизмами привода к электрогенератору, также соединены между собой и имеют общую зубчатую передачу, редуктор и электрогенератор. Конструкция электростанции позволяет получить увеличение мощности, снимаемой с 1 м 2 воды. 4 з.п.ф-пы, 4 ил.

Изобретение относится к энергетике, в частности для выработки электроэнергии путем использования энергии морских волн за счет образующихся вертикальных подъемов и спадов волн. Известна волновая электростанция, а.с. N 1373855 F 03 B 13/12, содержащая плавучий корпус с электрогенератором, воздушной турбиной к волноприемным камерам с поплавками. Камеры выполнены в виде стаканов, открытый торец которых погружен под уровень воды. При этом для увеличения КПД каждая камера снабжена дополнительной воздушной турбиной и гидронасосом, связанными с поплавком при помощи бесконечной цепной передачи. Основным недостатком указанной установки является ограниченная мощность, связанная с медленным подъемом поплавка, равной подъему волны, и с тем, что на цепь действует ограниченная выталкивающая сила от поплавка, равная половине объема поплавка, так как удельный вес поплавка равен 0,5 г/см 3 . Большое количество механизмов и передаточных устройств усложняет установку и ведет к значительным потерям мощности, уменьшающих эффект от использования поплавка. Известна волновая электростанция (патент РФ N 2049925, кл. 6 F 03 B 13/12, 6 F 03 B 13/22 от 06.02.1992 г.), содержащая плавучий корпус с электрогенератором, воздушной турбиной и волноприемными камерами в виде погруженных в воду открытым концом стаканов, снабженных внутри поплавками Г-образной формы, установленных на горизонтальном валу с возможностью одностороннего вращения, при этом один из выступов поплавка длиннее или тяжелее другого, все валы соединены между собой, повышающий редуктор связан с последними и валом воздушной турбины при помощи обгонных муфт, а вал турбины подключен к электрогенератору. Основным недостатком указанной волновой электростанции является также низкий КПД и сложность конструкции. Это связано с тем, что ввиду кратковременности воздействия волны на сжатый воздух в камерах не удается передать весь сжимаемый в камере воздух в воздушную турбину, а при увеличении проходного сечения воздуховодов и самой турбины уменьшится давление воздуха в камере и соответственно снимаемая мощность с турбины. Г-образная форма поплавка не позволяет эффективно использовать пространство в части увеличения выталкивающей силы и создает еще большее гидравлическое сопротивление при вращении его выступов. Кроме того, конструкция волновой электростанции с использованием энергии сжатого воздуха очень сложна в изготовлении и в эксплуатации и требует больших капитальных затрат на изготовление турбины. Волновая электростанция по патенту РФ N 2049925 принята за прототип. Задачей изобретения является упрощение конструкции и повышение мощности волновой электростанции. Это достигается тем, что в волновой электростанции, содержащей плавучий корпус с электрогенератором, расположенные на горизонтальном валу с возможностью одностороннего вращения поплавки, занимающие в воде положение неустойчивого равновесия, переходящего в неуравновешенное состояние и ускоренное вращательное движение в момент полного погружения поплавка, повышающий редуктор, соединяющий вал с электрогенератором, плавучий корпус выполнен в виде соединенных не менее чем двух узких понтонов, разнесенных по ширине и снабженных сверху поперечно расположенными параллельными друг другу эстакадами, вдоль каждой эстакады снизу установлены соосно кронштейны с опорами под вал, поплавки расположенных между всеми опорами последовательно с минимальными торцевыми зазорами, исключающими заклинивание поплавков при их относительном вращении, на выходных концах валов установлено зубчатое колесо, связанное непосредственно с зубчатым колесом на входном валу редуктора или через повышающую зубчатую передачу, поплавок выполнен в виде полого герметичного полуцилиндра и снабжен дополнительным грузом и расположенным с противоположной ему от оси стороны объемным выступом в виде дополнительного поплавка, при этом момент, создаваемый весом объемного выступа, больше (примерно на 5-10%) момента, создаваемого дополнительным грузом, а момент, создаваемый выталкивающей силой при погружении в воду одного объемного выступа больше момента, создаваемого весом объемного выступа, неуравновешенными воздействиями на поплавок водных и воздушных потоков и силами трения в момент начала вращения поплавка. При этом выходные концы рядом расположенных валов эстакад попарно или более соединены между собой путем зацепления зубчатых колес и установки общего редуктора и электрогенератора, а поплавки на связанных между собой валах расположены симметрично, выходные концы соосно расположенных валов эстакад, размещенных в одну линию, соединены между собой и снабжены общей зубчатой передачей, редуктором и электрогенератором, объемный выступ поплавков выполнен заодно с полуцилиндром путем удлинения окружности полуцилиндра, передняя по ходу вращения поплавка поверхность объемного выступа выполнена в виде сужающего клина. На фиг. 1 изображен общий вид волновой электростанции, на фиг. 2 показан вид сверху, на фиг. 3 изображен отдельно поплавок, а на фиг. 4 его поверхность. При этом обозначено - угол поворота поплавка в текущее положение, Q о - выталкивающая сила, действующая на поплавок в исходном положении, P - вес поплавка, h п - плечо от силы веса поплавка, C в - точка центра массы воды в объеме погруженной части поплавка, Q - выталкивающая сила в текущем положении, h в - плечо выталкивающей силы, P ов - вес объемного выступа, P д - вес дополнительного груза, Y св - расстояние от оси О до центра массы воды в объеме погруженной части поплавка (для сектора с углом Y сп - расстояние от оси О до центра масс поплавка, h ов - плечо от силы веса объемного выступа, h д - плечо от силы веса дополнительного груза, l - длина поплавка, R - наружный радиус поплавка. Волновая электростанция состоит из плавучего корпуса, выполненного в виде разнесенных по ширине друг от друга не менее чем двух узких понтонов (на фиг. 1 показано 3 понтона - 1, 2 и 3), соединенных между собой балками 4 и 5. Понтоны 1 и 3 выполнены в виде полой герметичной трубы, а средний понтон 2 имеет коробчатую форму для размещения в нем механизмов привода. На понтонах установлены поперек им и параллельно друг другу эстакады 6, опирающими своими концами на понтоны. Вдоль каждой эстакады 6 установлены снизу соосно кронштейн 7 с опорами под вал 8. Между всеми опорами кронштейнов 6 установлены на валу поплавки 9 с возможностью одностороннего вращения (за счет применения обгонных муфт или храповых механизмов). Поплавки 9 располагаются последовательно на валу с минимальными торцевыми зазорами, исключающими заклинивание поплавков при их относительном вращении от температурных и силовых деформаций. На выходных концах валов 8 устанавливаются зубчатые колеса 10, которые находятся в зацеплении непосредственно с зубчатыми колесами (на фиг. не показано) на входном валу повышающих редукторов 11 или через дополнительную повышающую зубчатую передачу (на фиг. не показано). Зубчатое колесо 10 выполняет одновременно роль маховика. Выходной вал каждого редуктора 11 связан с валом электрогенератора 12 (редуктор 11 устанавливают при необходимости, возможна передача на генератор без редуктора). Поплавки 9 (см. фиг. 3) выполнены в виде полых герметичных полуцилиндров. При этом они снабжены объемным выступом 13 (над осью ОХ), выполненным в виде отдельного элемента или заодно с полуцилиндром, как это изображено на фиг. 3 (объемный выступ выполнен путем удлинения окружности полуцилиндра на угол от оси ОХ) и образования дополнительного сектора. На противоположной стороне внутри поплавка устанавливается дополнительный груз 14 с таким расчетом, чтобы момент, создаваемый весом объемного выступа 13, был равен или больше (примерно на 5-10%) момента, создаваемого дополнительным грузом 14, а выталкивающая сила, действующая на один объемный выступ 13 при погружении его в воду, должна создавать крутящий момент, больший момента, создаваемого весом объемного выступа, хаотичным и неуравновешенным воздействием на поплавок водных и воздушных потоков и силами трения, действующих в момент начала вращения поплавка. Объемный выступ 13 является инициирующим элементом, выводящим поплавок из состояния неустойчивого равновесия в неуравновешенное состояние с ускоренным поворотом поплавка (кувырком) при полном погружении поплавка в воду. Размеры волновой электростанции, количество понтонов и эстакад с поплавками зависят от планируемого съема мощности. При этом для обеспечения большей равномерности вращения генератора, а также уменьшения количества используемых механизмов приводов (зубчатых передач, редукторов, муфт и т.д.) выходные концы рядом расположенных валов эстакад попарно или более соединены между собой путем зацепления зубчатых колес на выходных концах валов между собой с установкой общего редуктора, электрогенератора и повышающей зубчатой передачи, а поплавки на связанных кинематически между собой валах расположены симметрично относительно плоскости, проходящей по середине расстояния между валами. В этом случае объемные выступы поплавков на одном валу будут располагаться на противоположной стороне по отношению к расположению объемных выступов поплавков на другом валу. Такое расположение поплавков обеспечивает вращение кинематически связанных валов в разные стороны. При количестве понтонов свыше двух для обеспечения большей равномерности вращения электрогенераторов и уменьшения количества используемых механизмов приводов и электрогенераторов эстакады и валы на смежных понтонах располагают в одну линию. В этом случае выходные концы эстакады на смежных понтонах соединяют между собой (при помощи муфты) с использованием одного общего зубчатого колеса на выходном конце одного из этих валов, общей повышающей зубчатой передачи, общего редуктора и электрогенератора (как это изображено на фиг. 1). Для уменьшения сопротивления воды при погружении поплавка в воду в момент, когда он совершает вращательное движение из крайнего верхнего положения (после кувырка) передняя по ходу вращения поплавка поверхность 15 выполнена в виде сужающего клина (фиг. 4). Поплавки 8 устанавливаются на валу с зазором и передают крутящий момент на вал при помощи обгонной муфты, состоящей из клиновидно-криволинейного пространства 16 (образованного криволинейной поверхностью 17 выемки вала и цилиндрической поверхностью отверстия поплавка) и подпружиненных пальцев 18, установленных внутри клиновидно-криволинейного пространства 16. Возможно сопряжение поплавков с валом с использованием храпового механизма, состоящего из храпового колеса, жестко закрепляемого на валу, и собачки, устанавливаемой на поплавке (на фиг. не показаны). При этом для уменьшения длины валов храповое колесо и собачка целесообразно располагать внутри проточки поплавка, выполненной соосно с отверстиями поплавка со стороны одного или двух торцев поплавка. Для обеспечения гарантированного удержания поплавков в момент набегания волны от поворота до их полного затопления и тем самым создания максимальной потенциальной энергии погруженного поплавка, а также расширения технологических возможностей в части исключения необходимости очень точного изготовления поплавков, целесообразно обеспечить условие, чтобы момент, создаваемый весом объемного элемента, заведомо превосходил момент, создаваемый весом дополнительного груза. В этом случае для удержания поплавков от поворота в обратную сторону под действием этой разницы в моментах на уровне задней поверхности 19 поплавков 9 устанавливаются с небольшим перекрытием задней поверхности поплавка подпружиненные подвижные упоры 20, шарнирно закрепленные на неподвижных штангах 21, связанных с эстакадами. Сверху над подвижными упорами 20 закреплены на штангах неподвижные упоры 22, расположенные вне зоны вращения поплавка и удерживающие подвижные упоры 20 от подъема вверх. Поскольку при погружении поплавка в воду до начала затопления объемного выступа неуравновешенный момент, действующий в обратную сторону на поплавок, незначительный, то и сила воздействия поплавка снизу на подвижный упор 20 незначительна. Это позволяет выполнить упоры 20 небольшими по массе и объему и использовать пружину с небольшим усилием сжатия. Поэтому при рабочем вращении поплавка и воздействия его на подвижные упоры 20, уже сверху, они легко поворачиваются, погружаясь в воду, и не оказывают большого сопротивления поплавкам. Неподвижные упоры 22 могут быть выполнены непосредственно в самих шарнирах подвижных упоров 20 в виде известных конструкций ограничителей поворота. При равенстве моментов, создаваемых объемным выступом и дополнительным грузом, можно исключить применение подвижного упора 20 и неподвижного упора 22. Но для этого необходимо обеспечить постепенное увеличение объема правой части поплавка от оси OY, например, за счет плавного увеличения длины поплавка. При погружении в воду правой части поплавка будет действовать большая выталкивающая сила, чем в левой, которая обеспечит гарантированный поворот поплавка в сторону объемного выступа. Но в этом случае невозможно обеспечить максимальный запас потенциальной энергии поплавка, а его поворот будет адекватным подъему уровня воды в волне. Плавучий корпус снабжен растяжками 23 с возможностью изменения их длины (например, с помощью лебедки). Это позволяет изменять положение корпуса относительно направления волн с целью обеспечения более плавного нагружения валов крутящим моментом от поплавков, расположенных под углом к фронту волн. Возможны другие варианты изменения углового положения корпуса, например, с помощью воздушного или водного киля. Для регулирования положения поплавков относительно уровня воды при монтаже электростанции используются домкраты и прокладки у опор эстакад. При этом целесообразно монтаж производить с обеспечением максимального расположения поплавков относительно уровня воды, а регулировку осадки корпуса производить при помощи закачки или откачки в понтонах. Возможен вариант использования для этого дополнительных понтонов путем подъема или опускания их в воду на определенную глубину. Для укрытия оборудования от атмосферных осадков и создания нормальных климатических условий в работе обслуживающего персонала предусматривается крытое помещение 24. Коробчатый понтон 2 закрывается сверху люками (на фиг. не обозначены). Работа волновой электростанции выполняется следующим образом. В исходном положении, когда отсутствуют волны, все поплавки 9 занимают крайнее нижнее положение согласно фиг. 3, при этом они могут касаться и не касаться воды и даже могут быть чуть погруженными в воду (до уровня воды, при котором в процессе работы свободно падающий с крайнего верхнего положения поплавок создает неуравновешенный момент даже при погружении части поплавка в воду до этого уровня, и поплавок свободно возвращается в исходное положение, будучи частично затопленным. Разница в моментах M от веса объемного выступа 13 и дополнительного груза 14 прижимает поплавок 9 к подвижному упору 20, а тот в свою очередь прижимается к неподвижному упору 22. При образовании волн, "набегающих" под острым углом к оси валов, поплавки поочередно погружаются в воду (затапливаются волной). При этом возникает выталкивающая сила Q, равная весу воды в объеме погруженного поплавка (по закону Архимеда). Так как выталкивающие силы, действующие по обе стороны от оси OY, равны, то результирующая выталкивающая сила Q проходит вертикально вверх через ось вращения поплавка и не создает крутящего момента при погружении поплавка до самой оси OX. Сила веса поплавка P также проходит через ось OX, только вниз, и не создает крутящего момента, за исключением вышеуказанного момента M, создаваемого разницей моментов от веса объемного выступа 13, и веса дополнительного груза, который уровновешивается реакцией R уп опоры от упоров 20 и 21. При погружении поплавка выше оси OX затапливается объемный выступ 13, вследствие чего возникает дополнительный крутящий момент, который превосходит разницу M в моментах от веса объемного выступа и дополнительного груза. В результате этого поплавок начинает поворачиваться, перескакивает положение неустойчивого равновесия и стремится совершить кувырок и выскочить с ускорением из воды. Выталкивающая сила, действующая по левую сторону от оси OY, будет стремительно уменьшаться, а с правой стороны действует на протяжении всего поворота поплавка от исходного положения до угла О=90 o максимальная выталкивающая сила, равная весу вытесненной воды в объеме половины сечения поплавка. При повороте на угол О=90 o выталкивающая сила с левой стороны становится равной 0, а начиная с угла = 90 o , уменьшается выталкивающая сила с правой стороны и становится = 0, когда задняя поверхность 19 не достигнет оси OX с обратной стороны от оси OY. Все это происходит мгновенно, с ускорением, поплавок выныривает полностью из воды с разгоном. Такой эффект создается благодаря форме поплавка. В процессе поворота левая часть поплавка постоянно пересекает положение неустойчивого равновесия и как бы "накачивает собой" объем в правой части, компенсируя полностью выход из воды поплавка в течение всего поворота на угол 90 o , а значит и сохраняя величину выталкивающей силы в правой части. Из механики известно, что когда на тело постоянно действует сила - оно двигается с ускорением. Но такому резкому повороту поплавка на первых порах мешает сила инерции и сопротивление системы приводов вала, зубчатых колес, редуктора и электрогенератора, которые только начинают сначала медленное вращение. Благодаря одновременному воздействию нескольких поплавков создается достаточный момент для вращения вала. Вначале скорость вращения валов меньше скорости вращения поплавков, которую они имели бы при кувырке. Поплавки воздействуют на вал и вращаются со скоростью вала. При этом они не успевают полностью выйти из воды, как уровень волны начинает падать, и поплавки возвращаются обратно в исходное положение. Валы же продолжают вращение по инерции и от того, что на них действуют другие поплавки, и не препятствуют возврату предыдущих поплавков в исходное положение за счет наличия обгонных муфт или храпового механизма. В то время когда одни поплавки совершают холостой ход на валу, другие поплавки в это время совершают активный рабочий ход, а еще другие поплавки находятся в промежуточном состоянии. По мере нарастания оборотов вала поплавки увеличивают скорость поворота валов. При этом поплавки с каждым оборотом все больше и больше выныривают из воды, а скорость валов приближается к скорости кувырка поплавков в свободном от вала состоянии. Поплавки уже успевают полностью вынырнуть из воды до начала падения уровня волны и занять крайнее верхнее положение. В этот момент передняя поверхность 15 поплавков воздействует на подвижный упор 20, отжимает его вниз и погружается в воду. При падении уровня волны поплавки продолжают вращение к исходному положению адекватно спаду волны. Этому способствует разность моментов M от веса объемного выступа и веса дополнительного груза. Валы вращаются уже с большей скоростью, чем поплавки, поворачивающиеся в сторону исходного положения. При этом за счет инерции движения поплавки проскакивают исходное положение и освобождают подвижный упор 20, который возвращается под действием пружины в исходное положение. В это время поплавки из-за разности моментов M совершают колебательное движение обратно к исходному положению и, упираясь в подвижный упор 20, взаимодействующий с неподвижным упором 22, останавливаются в исходном положении. Далее процесс повторяется для каждого поплавка с периодичностью набегания волны, зависящей от амплитуды волны: чем выше волны, тем больше период. При вращении валов зубчатые колеса 10, закрепленные на выходном конце валов, передают крутящий момент непосредственно зубчатому колесу на входном валу редуктора 11 (или через дополнительную повышающую зубчатую передачу). От редуктора 11 крутящий момент передается электрогенератору. Во вращении каждого вала в волновой электростанции наступает такой момент, когда от воздействия какой-то последней группы поплавков вал разгоняется до такой степени, что его скорость вращения становится равной средней скорости вращения поплавков при кувырке. Поплавки перестают воздействовать на вал на какой-то миг, и вал снова начинает терять скорость. Поплавки снова начинают воздействовать на вал и добавлять ему крутящий момент. Вал опять разгоняется, затем снова замедляется; таким образом поддерживается скорость вращения валов, близкая к скорости вращения поплавка при свободном кувырке. Для расчета мощности N с волновой электростанции необходимо произвести сначала расчет крутящего момента, создаваемого одним поплавком. Для упрощения расчетов принимаем, что воздушное пространство внутри поплавка начинается от оси вращения, т.е. не учитываем наличие ступицы и отверстия поплавка (при этом очень незначительное увеличение крутящего момента от выталкивающей силы скомпенсируем тем, что в расчетах не будет учитываться крутящий момент, создаваемый выталкивающей силой, действующий на объемный выступ при затоплении его волной). Рассмотрим текущее положение поплавка (фиг. 3), при котором он уже совершил поворот от исходного положения на некоторый угол . В этом случае затопленная часть поплавка - полуцилиндра представляет сектор с углом 180 o - (объемный выступ не учитываем). Центр масс этой части сектора будет располагаться в точке C в на радиусе, делящем сектор пополам, т.е. на угле сектора. От оси OY это составляет угол На поплавок действует еще сила веса P, центр тяжести C п которого расположен на радиусе, проходящем по оси симметрии поплавка (180 o: 2 = 90 o) в исходном положении. От оси OY в текущем положении это составляет угол . Из механики известна формула, связывающая кинетическую энергию вращательного движения (T - T o) на угол от = 0 до работой A, выполняемой за этот же поворот от 0 до :(T - T o)=A, где где - скорость вращательного движения; M - крутящий момент; I o - момент инерции. Для определения работы составим сначала уравнение для крутящего момента. Уравнение момента, действующего на поплавок в текущем положении (при повороте на некоторый угол ) M т = Qh в - Ph п - P ов h ов + P д h д = M трен.
Для упрощения моменты, создаваемые весом объемного выступа и весом дополнительного груза в расчете не учитываем, ввиду их малости. Также не учитываем моменты от сил трения, которые на порядок меньше, чем момент от выталкивающей силы. Для сектора на угле 180 o -:

где - удельный вес воды,


Отсюда:

Тогда работа A, создаваемая действием выталкивающей силы Q и весом поплавка P на угле поворота от = 0 (исходное положение) до = 180 o (до выхода поплавка из воды), составит

После преобразования получаем

После решения получаем

Для определения мощности A/t определим время поворота поплавка на угол от 0 o до 180 o . Из уравнения T-T o =A после подстановки получаем

так как при 0 = 0 0 = 0, а

то после подстановки получим равенство


отсюда

Так как = , то уравнение мощностей будет

Рассмотрим пример расчета мощности волновой электростанции, выполненной согласно фиг. 1, 2, и 3: 3 понтона с 20 эстакадами и валами. На каждом валу 20 поплавков из алюминиевого сплава Д16Т ( = 2,7) . Размеры поплавков: R = 1 м; l = 1 м
При толщине листа 5 мм вес поплавка P = mg = 70 кг. Сначала произведем расчет мощности для одного поплавка. При этом примем удельную плотность морской воды равной 1025 кг/м 3 (исходя из средней условной плотности T = 25). Исходя из уравнения (2), получим


При этом

а

При темпе волнообразования в среднем 5,5 с мощность поплавка равна
N = 60,66:5,5 = 11 кВт. Примем итоговый КПД волновой электростанции с учетом КПД приводов и всех сил трения, в т.ч. воды, равным 0,6, тогда мощность волновой электростанции из 400 поплавков составит
N с = 11 400 0,6=2640 кВт,
При этом волновая электростанция будет занимать площадь . Съем мощности с 1 м 2 составит 2640:800=3,3 кВт/м 2 (сравните со съемом мощности в прототипе в 1,39 кВт или с волновыми электростанциями при использовании только воздушных турбин, где съем мощности равен 1 кВт/м 2). При этом следует отметить, что при большей высоте волны (свыше оси X) увеличивается выталкивающая сила и достигает суммарно максимального значения, когда поплавок будет затоплен от исходного нижнего положения на высоту 2R. В этом случае на поплавок воздействует выталкивающая сила в течение поворота поплавка не на 180 o , а на угол 270 o . При этом с момента поворота поплавка на угол 90 o (от исходного положения) на поплавок будет воздействовать неуравновешанная выталкивающая сила, равная весу воды, вытесненной в объеме всего поплавка (т.е. в 2 раза больше). Соответственно и создаваемая мощность волновой электростанции будет значительно выше приведенной в расчетах. Годовая выработка W электроэнергии, при условии работы волновой электростанции, например, 2/3 от годового фонда времени (в остальное время затишье или отсутствие волн необходимой высоты) и без учета волн большей высоты, чем высота затопляемой части поплавка на величину объемного выступа (данные о времени работы волновой электростанции необходимо взять конкретно из статистических данных метеонаблюдений для конкретной местности) составит 15417600 кВт/час = (2/3 264024365) При цене 1 кВт/часа 100 руб. доход от электростанции будет равен 1541,76 млн. руб. в год. При среднем потреблении 30 кВтчас в месяц на одного жителя волновая электростанция обеспечит энергопотребление населенного пункта с количеством жителей 15417600: (3012)= 42826 чел., т.е. целого городка (не считая промышленное потребление). Связанные в единую энергетическую сеть волновые электростанции позволят существенно сократить выработку электроэнергии, осуществляемую за счет сжигания топливных ресурсов. Исходя из данных многолетних метеонаблюдений за прибрежными волнами конкретных местностей могут быть построены волновые электростанции с различными по размерам и количеству поплавками. При этом должна быть проведена унификация и установлен оптимальный размерный ряд электростанций (что позволяет уменьшить затраты на их изготовлении). Станции могут быть установлены на разных расстояниях от побережья. Учитывая простоту волновой электростанции, затраты на создание их окупятся в течение года. Так, например, представленная волновая электростанция будет иметь такую укрупненную калькуляцию работ на изготовление (в ценах начала 1997 года);
3 понтона диаметром 3м, длиной 15-18 м 10 млн х 3 = 30 млн.,
20 эстакад с опорами под вал - 5 млн х 20 = 100 млн.,
20 валов - 5,5 х 20 = 110 млн.,
400 поплавков из алюм. сплава (суммарный вес 30 т) с обгонными муфтами - 0,25 х 400 = 100 млн.,
5 редукторов - 25х5 = 125 млн.,
5 генераторов - 30х5 = 150 млн.,
5 зубчатых передач 5х5 = 25 млн.,
Электрооборудование (шкафы, провода и т.д.) - 20 млн.,
Монтаж станции - 150 млн.,
Итого: 810 млн. рублей. Сравнивая с годовым доходом 1541,76 млн. рублей, можно уверенно сказать, что при данной калькуляции затрат станция окупит капитальные затраты в течение года. Таким образом, предлагаемая волновая электростанция позволяет более эффективно превращать кинетическую энергию поднимающейся волны в потенциальную энергию выталкивающей силы, действующей на поплавки, за счет удержания поплавков в крайней нижнем положении до их полного погружения в воду и мгновенного полного преобразования этой потенциальной энергии в кинематическую энергию, причем непосредственно во вращательное движение поплавков. Съем мощности с 1 м 2 воды увеличивается в 2-3 раза, упрощается конструкция волновой электростанции за счет использования кинематически простых элементов, не требующих высокой точности, и применения обычных, освоенных в машиностроении деталей и покупных изделий (зубчатых передач, валов, обгонных и соединительных муфт, редукторов, генераторов). Огромные морские просторы обеспечивают возможность строительства большого количества таких волновых электростанций и сократить количество теплоэлектростанций, сжигающих топливные ресурсы. Улучшается экологическое состояние в местах выработки электроэнергии окружающей среды. Высокая окупаемость капитальных затрат (в течение 1-2 лет) делает эффективным использование финансовых ресурсов при строительстве предлагаемой волновой электростанции.

Движение океанских волн сопровождается выделением фантастических объемов энергии. Однако человечество пока так и не научилось эффективно перерабатывать эту энергию для своих целей. Одна из успешнейших на данный момент попыток – волновая электростанция Oceanlinx в акватории города Порт-Кембла, Австралия.



В настоящее время в мире проводятся испытания шести волновых электростанций. Электростанция же Oceanlinx у берегов Австралии была введена в эксплуатацию еще в 2005 году, однако затем была демонтирована для реконструкции и переоборудования, и только сейчас вновь запущена в действие.


Принцип работы волновой электростанции заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электричество.


Основным элементом, определяющим эффективность работы волновой электростанции, является турбина. Из-за того, что направление движения волн и их сила постоянно меняются, обычные турбины для выработки волновой электроэнергии непригодны. Поэтому на станции Oceanlinx используется турбина Denniss-Auld c регулируемым углом поворота лопастей.

Одна силовая установка Oceanlinx обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.

Волновая электростанция - это электрическая станция, которая располагается в водной природной среде с целью получения электроэнергии из кинетической энергии водных масс. Океаны обладают колоссальной энергией, но человек пока только начинает ее осваивать. Именно эту задачу и выполняют волновые электростанции.

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

Волновые электростанции в России

В России, как и во всех странах, имеющих выход к морскому побережью, после многих лет затишья, возвращается интерес к источникам энергии, способным восстанавливаться, к ним относятся и волновые электростанции.

Первая в нашей стране электростанция , основанная на преобразовании энергии волн, построена в
2014 году на Дальнем Востоке в Приморском крае на полуострове Гамова. Это универсальная станция, она способна преобразовывать не только энергию направленных водных масс, но и энергию природных приливов и отливов.

Профильные министерства нашей страны, совместно с руководством государства разработали план развития зеленой энергетики до 2020 года, в соответствии с которым альтернативные энергетические источники будут составлять до 5% от общего количества вырабатываемого электричества в стране. Этим планом предусмотрено и дальнейшее развитие волновых электрических станций.

Волновые электростанции в мире

Первая в мире электростанция на волнах появилась в 1985 году в Норвегии, ее мощность составляла 500 кВт.

Первой в мире промышленной электрической станцией, использующей энергию волн для производства
электрической энергии, принято считать Oceanlinx в Австралии. Она начала своё функционирование в 2005 году, потом была произведена ее реконструкция, и в 2009 году станция заработала вновь. Работа станции основана на принципе «осциллирующего водяного столба». Мощность установки сейчас составляет 450 кВт.

Первая коммерческая волновая электростанция начала работу в 2008 году в Агусадоре, Португалия. Это установка-пионер, которая использует непосредственно механическую энергию волны. Работа станции основана на принципе «колеблющегося тела». Разработала проект английская компания Pelamis Wave Power, мощность станции составила 2,3 МВт, и есть возможность увеличения мощности путем монтирования дополнительных секций.

В Великобритании построили самую большую в мире волновую электростанцию Wave Hub, она расположена у полуострова Корнуэлла. Электростанция оборудована 4-мя генераторами мощностью по 150 кВт каждый. Работа станции основана на принципе «колеблющегося тела».

Почему это выгодно?

В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии. Одним из таких вариантов является энергия морских волн. С учетом того, что мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления, то и развитие «зеленой» энергетики как нельзя актуально в наше время.

Это можно объяснить следующим причинами:

  1. Природные богатства планеты находятся на грани истощения, запасы традиционных источников энергии: угля, нефти и газа – подходят к концу.
  2. Атомная энергетика из-за своей потенциальной опасности не получила должного распространения.
  3. «Зеленая» энергетика не вредит окружающей среде и является возобновляемой.
  4. Потенциал волновых электростанций оценивается в 2,0 млн. МВт, что сравнимо по мощности с тысячей работающих атомных станций.

Ученые всего мира продолжают работы по совершенствованию способов преобразования энергии волн океана, и перечисленные выше причины являются важным аргументом для продолжения этих изысканий.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Волновые электростанции не являются исключением, рассмотрим все за и против использования этого источника энергии.

К плюсам использования можно отнести:


К минусам данного типа электростанций относятся:

  • Малая мощность вырабатываемой энергии;
  • Не стабильный характер работы, вызванный атмосферными явлениями в окружающей среде;
  • Может создавать опасность для хода судов и промышленного лова рыбы.

Приведенные выше «минусы» использования постепенно утрачивают свою актуальность, ученые и конструкторы продолжают свою работу. Разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия волн. Решаются задачи по передаче полученной энергии на большие расстояния.

Похожие публикации