Интернет-журнал дачника. Сад и огород своими руками

Индикатор питания 220в на светодиоде схема. Радиосвязь. Выключатели с подсветкой

Достаточно часто нам приходится сталкиваться с таким вопросом - как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто - ставим ограничительный резистор и забываем. Светодиод как работал "в прямом направлении" так и будет работать.

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так - муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже.

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод - вариант 1

Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

Подключение LED по простой схеме с резистором и диодом - вариант 2

Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода - VD1. Как только в схему "попадает" отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод HL1 (при этом прямое падение напряжения на светодиоде HL1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода HL1).

Расчетная часть схемы

Номинальное напряжение сети:

U С.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

U С.МИН = 170 В
U С.МАКС = 250 В

Принимается к установке светодиод HL1, имеющий максимально допустимый ток:

I HL1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода HL1:

I HL1.АМПЛ.МАКС = 0,7*I HL1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде HL1 (опытные данные):

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

U R.ДЕЙСТВ.МИН = U С.МИН = 170 В
U R.ДЕЙСТВ.МАКС = U С.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

R ЭКВ.РАСЧ = U R.АМПЛ.МАКС /I HL1.АМПЛ.МАКС = 350/14 = 25 кОм

P R.МАКС = U R.ДЕЙСТВ.МАКС 2 /R ЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

P R.РАСЧ = P R.МАКС /0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

P R.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

R РАСЧ = 2*R ЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

R ЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

P R.МАКС = U R.ДЕЙСТВ.МАКС 2 /R ЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

I HL1.АМПЛ.МИН = I VD1.АМПЛ.МИН = U R.АМПЛ.МИН /R ЭКВ = 240/26 = 9,2 мА
I HL1.АМПЛ.МАКС = I VD1.АМПЛ.МАКС = U R.АМПЛ.МАКС /R ЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

I HL1.СР.МИН = I VD1.СР.МИН = I HL1.ДЕЙСТВ.МИН /К Ф = 3,3/1,1 = 3,0 мА
I HL1.СР.МАКС = I VD1.СР.МАКС = I HL1.ДЕЙСТВ.МАКС /К Ф = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

U VD1.ОБР = U HL1.ПР = 2 В

Расчетные параметры диода VD1:

U VD1.РАСЧ = U VD1.ОБР /0,7 = 2/0,7 = 2,9 В
I VD1.РАСЧ = U VD1.АМПЛ.МАКС /0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

U VD1.ДОП = 30 В
I VD1.ДОП = 20 мА
I 0.МАКС = 250 мкА

Минусы использования схемы подключения светодиодов к 220 В по варианту 2

Главные недостатки подключения светодиодов по этой схеме - малая яркость светодиодов, за счет малого тока. I HL1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: P R.МАКС = 2,4 Вт.

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В

При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо - посчитает и сравнит. Разница небольшая.

Минусы подключения по 3 варианту

Если самые "пытливые умы" уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень - придется поверить на слово. Минус такого подключения - также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего I HL1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: Р R1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

Подключение светодиода на 220 В с использованием диодного моста - 4 вариант

Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

U VD.РАСЧ = U VD.ОБР /0,7 = 2,6/0,7 = 3,7 В
I VD.РАСЧ = U VD.АМПЛ.МАКС /0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

U VD.ДОП = 30 В
I VD.ДОП = 20 мА
I 0.МАКС = 250 мкА

Недостатки схемы подключения по 4 варианту

Однако при такой схеме мы получим заметное увеличение яркости светодиода: HL1: I HL1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

Как подключить светодиод к 220 В используя конденсатор

Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент - конденсатор. На схеме - C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

Подключение светодиода к сети 220 В на примере выключателя с подсветкой

Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки - не понятно.

Видео на тему подключения светодиода к сети 220 В

Ну и в конце всего длинного поста посмотрим видео на тему: "как подключить светодиоды к 220 В". Для тех, кому лень все читать было.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину - в обратную) к нему приложится полное амплитудное напряжение сети - 315 вольт! Откуда такая цифра? 220 В - это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.

Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двух ваттных резистора, каждый сопротивлением в два раза меньше.

Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.

Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так - вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.

А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение - не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.

Как рассчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I - необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.

светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.

Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.


Ниже описание с сайта www.chipdip.ru/video/id000272895


При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радио-элементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.


Описание работы схемы подключения светодиода к напряжению 220 вольт

Схема подключения светодиода к 220 вольтам не сложная и принцип ее работы также прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. При увеличении напряжения на конденсаторе стабилитрон увеличивает свое сопротивление, ограничивая напряжения зарядки для конденсатора своим рабочим стабилизирующим напряжением, фактически тем же напряжением которым питается светодиод. Больше этого напряжения конденсатор не зарядиться, так как стабилитрон "закрылся", а во второй ветке мы имеем большое сопротивление в виде цепочки светодиод и резистор R1. В данный полупериод светодиод не светится. Стоит сказать и о том, что стабилитрон защищает светодиод от обратного тока, который может вывести светодиод из строя.
Вот, наша полуволна меняется и меняется полярность на входах нашей схемы. При этом конденсатор начинает разряжаться и менять свою полярность зарядки. Если с прямым подключением все понятно, то ток со второй ножки конденсатора утекая в цепь, проходит теперь через цепочку резистора и светодиода, именно в этот момент светодиод и начинает светиться. При этом напряжение, как мы помним, зарядки конденсатора соответствовало примерно напряжению питания светодиода, то есть наш светодиод не сгорит.




Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г.

Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей.

В свете того, что уже было сказано , задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался.

При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения.

В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это , амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод.

Как защитить светодиод от обратного напряжения

Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения?

Оказывается, все очень просто. Первый способ - последовательно со светодиодом включить обычный с высоким обратным напряжением (не ниже 400В), например, 1N4007 - обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а.

Второй способ, не менее эффективный, - просто зашунтировать светодиод другим диодом, включенным встречно - параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521.

Более того, можно просто включить встречно - параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1.

Рисунок 1. Схемы защиты светодиодов от обратного напряжения

Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый.

Если задаться уровнем тока в 20мА, то составит еще больше - 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая ?

Конденсатор - безваттное сопротивление

Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют : ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2.

Рисунок 2. Схема включения светодиода через баластный конденсатор

Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный.

Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1.

Рисунок 3. Схема подключения светодиода к осветительной сети

Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В.

На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом , - транзисторы сгорели, а печатная плата осталась почти нетронутой.

На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать.

Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75.

Здесь U - напряжение питания, Uд - падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I - ток через светодиоды, R - сопротивление гасящего резистора. Здесь как всегда, - напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 - коэффициент для повышения надежности. Эта формула уже приводилась в статье .

Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий.

Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов.

Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд),

где C - емкость конденсатора в микрофарадах, I - ток в миллиамперах, U - амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью

C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ.

Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны.

Конденсатор сначала надо проверить

Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе!

Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока.

Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей , способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор.

Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора.

Выключатели с подсветкой

Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого . Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше - бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4.

Рисунок 4. Схема подключения светодиода в выключателе с подсветкой

Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно.

При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая.

Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы.

Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов».

При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(...как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье "

Как подключить светодиод к сети 220 В? Для этого используются различные переходники. В данном случае многое зависит от мощности устройства. Для того чтобы избежать тепловых потерь, применяются фильтры. Уровень выходного напряжения зависит от типа резистора. Во многих случаях специалисты применяют компактные триггеры. Проводимость тока в цепи колеблется в районе 5 мк.

Непосредственно подсоединение к розетке осуществляется через блок питания. Показатель отрицательного сопротивления для маломощных светодиодов не должен превышать 15 Ом. Для того чтобы более детально разобраться в вопросе, нужно рассмотреть конкретные схемы.

Подключение моделей на 3 Вт

Как подключить светодиод к 220 В? Для моделей на 3 Вт используются волновые триггеры. Найти их в магазине не составит особого труда. Показатель проводимости у них равняется не более 5,5 мк. Также важно отметить, что существуют полупроводниковые триггеры. Для светодиодов на 3 Вт они не подходят. Для регулировки мощности устройства применяются модули. Используются указанные элементы с усилителями и без них.

Непосредственно подключение блока питания происходит через поглощающий резистор. Показатель входного напряжения должен составлять не более 220 В. В этом случае токовая перегрузка будет лежать в районе 12 Ом. Многие специалисты с модулями устанавливают фильтры. Однако в этом случае могут возникать импульсные помехи. В результате случается короткое замыкание цепи.

Подключение устройств на 5 Вт

Как подключить светодиоды к сети 220 В? Осуществляется процесс через волновые триггеры. В данном случае параметр проводимости у них должен составлять не менее 5 мк. Также подключить светодиод к 220 вольт разрешается через трансиверы. Используются они, как правило, без фильтров. Минимальная токовая перегрузка в цепи допускается в 14 Ом. Показатель выходного тока колеблется в районе 20 В. В данном случае многое зависит от мощности блока питания.

Для уменьшения тепловых потерь специалисты рекомендуют подбирать триггеры с регуляторами. Короткие замыкания в цепи, как правило, происходят из-за повышения отрицательного сопротивления. Срок службы светодиода в этом случае сильно сокращается. Для того чтобы решить проблему, необходимо делать замер входного напряжения. Указанный параметр обязан составлять не более 230 В. Как подключить светодиод к батарейке? Для этого понадобится обычный адаптер без переходника.

Светодиоды на 10 Вт

Как подключить на 10 Вт? Сделать это можно даже через полупроводниковые триггеры. В этом случае входное напряжение равняется 200 В. Основной проблемой является резкое снижение рабочей частоты. В данном случае нужно учитывать параметр рассеивания светодиода. Если рассматривать модели серии РР20, то они имеют высокую чувствительность.

Для их подключения применяются фазовые преобразователи. Устанавливаются указанные элементы перед блоком питания. Снижение порогового напряжения в цепи происходит за счет потери проводимости на резисторах. Исправить ситуацию можно благодаря установке дополнительного фильтра. Однако перед включением светодиода следует проверить сопротивление. В среднем указанный параметр колеблется в районе 13 Ом.

Подключение Sho Me H7

Как правильно подключить светодиод Sho Me H7? Данные модели отличаются высоким параметром рассеивания. Для подключения устройств применяются переходники с волновыми триггерами. Параметр минимальной токовой нагрузки допускается в 35 А. Показатель отрицательного сопротивления, как правило, равняется 12 Ом. Проблемы с модуляцией возникают довольно редко. Чаще всего неисправности связаны с фазовыми помехами. Решить указанную задачу можно, просто установив фильтр. Также специалисты используют разного типа резисторы.

Непосредственно блок питания обязан подключаться через трансивер. Таким образом можно избежать импульсных помех. Модули для регуляции мощности устанавливаются редко. Также важно отметить, что снижение чувствительности светодиода может происходить только из-за высокого порогового напряжения. Чтобы решить задачу, нужно понизить отрицательное сопротивление. Сделать это можно за счет использования более мощного переходника. Подключить светодиод к 12 вольтам разрешается через адаптер.

Подключение Sho Me H8

Как правильно подключить светодиод серии Sho Me H8? Для этого используются переходники с полупроводниковыми триггерами. Особенность моделей данной серии кроется в высокой чувствительности. Довольно часто новички сталкиваются с проблемами импульсных помех. Происходит это за счет неправильной установки блока питания. Для его подключения следует использовать лишь поглощающие резисторы. Показатель отрицательного сопротивления не должен превышать 12 Ом.

Также важно проверять выходное напряжение. Максимальное отклонение частоты допускается в 4 Гц. Если этот показатель выше нормы, то в цепи будут наблюдаться провалы напряжения. В конечном счете это приведет к большим тепловым потерям. Светодиод не сможет долго проработать. Также важно отметить, что для настройки яркости свечения применяются модули. Используются они с фазовым преобразователем. Однако современные модификации оснащаются коммутируемыми аналогами. Приводимость у них не сильно высокая. Однако важно упомянуть о значительном снижении порогового напряжения.

Подключение Sho Me H9

Подсоединяются светодиоды указанной серии через переходники только с волновыми триггерами. Фильтры в данном случае используются редко. Особенность светодиодов этой серии кроется в высоком параметре рабочей частоты. Многие специалисты блоки питания устанавливают через усилитель.

Параметр входного напряжения в среднем равняется 230 В. Таким образом, максимальная токовая нагрузка допускается в 50 А. Полупроводниковые триггеры для светодиодов этой серии не подходят. Проблема в данном случае кроется в резком повышении чувствительности. Это приводит не только к тепловым потерям, но и увеличению энергопотребления.

Модели Vision P21W

Как подключить светодиод к 220В? Это можно делать через переходники с различной проводимостью тока. Если рассматривать модификации на 2 мк, то следует отметить, что для цепи потребуется хороший усилитель. Фильтр в данном случае обязан располагаться за резистором. Непосредственно преобразователь нужно использовать фазового типа. Параметр входного напряжения не должен превышать 20 В.

Как подключить светодиод к 220В с переходником на 6 мк? В этой ситуации используются коммутируемые преобразователи. Отличие их заключается в резком снижении рабочей частоты. Коэффициент пульсации в данном случае зависит от типа резистора. Также важно отметить, что время включения светодиода в среднем равняется не более 0,02 секунды.

Модели Vision P30W

Подключение этих светодиодов можно сделать через волновой триггер. Показатель входного напряжения в цепи равняется 220 В. Чтобы избежать импульсных помех, применяются фильтры. Световой поток в устройствах регулируется при помощи модуляторов. Коэффициент пульсации у модели довольно высокий.

Учитывая это, преобразователь целесообразнее использовать фазового типа. Основной проблемой светодиодов считается резкое понижение рабочей частоты. Происходить это может по нескольким причинам. В первую очередь важно проверить резисторы. Проводимость их обязана равняться не менее 3 мк. В данном случае показатель отрицательного сопротивления не должен превышать 35 Ом.

Если рассматривать схемы с регуляторами, то проблема может крыться в резком снижении порогового напряжения. В данном случае нужно проверить волновой триггер. Его проводимость тока обязана составлять 4 мк. Чтобы избежать многие используют маломощные блоки питания. Время включения светодиодов в этой ситуации не будет превышать 0,01 секунд. Также можно надеяться на долгий срок службы устройства.

Модели Vision P25W

Как подключить светодиод Vision P25W? Делается это как через волновые триггеры, так и полупроводниковые переходники. В данном случае нужно учитывать количество светодиодов. Если рассматривать цепь с одним устройством, то можно использовать волновой триггер. Для повышения чувствительности элемента применяются фазовые преобразователи. Проблемы с импульсными помехами наблюдаются очень редко. Также важно отметить, что при установке фильтров можно избежать коротких замыканий.

Тепловые потери в этом случае будут минимальными. Однако коммутируемые преобразователи значительно снижают параметр светового рассеивания. Также указанные элементы влияют на коэффициент пульсации. Проблема в данном случае кроется в понижении рабочей частоты. Допустимый показатель токовой нагрузки равняется 45 А. Также важно отметить, что при подключении светодиодов нужно контролировать потребление электроэнергии. В среднем указанный показатель составляет не более 0,3 А.

Устройства LED C5W

Как подключить светодиод серии LED C5W? Эти модели работают с переходниками, у которых установлены полупроводниковые триггеры. Максимальное отклонение частоты допускается в 4 Гц. В данном случае нужно следить за снижением чувствительности. Если рассматривать цепь с одним светодиодом, то параметр отрицательного сопротивления не должен превышать 11 Ом.

Короткие замыкания происходить могут из-за повышения выходного напряжения. Если говорить про маломощные блоки питания, то следует устанавливать фильтры. Тепловые потери зависят исключительно от проводимости резистора. Провалы напряжения происходят довольно редко. Световая эффективность указанных светодиодов равняется около 55 лМ. Также важно отметить, что включаются они примерно за 0,02 секунды.

Устройства LED C11W

Как подключить C11W? Сделать это можно через полупроводниковые триггеры. Переходник в данном случае устанавливается за резистором. Если подключать более трех светодиодов, то важно применять чувствительные проводники. Показатель входного напряжения равняется около 200 В.

Больших перегрузок в сети эти светодиоды не смогут выдержать. Таким образом, на выходе устанавливаются фильтры. Многие специалисты подключают блоки питания через волновые триггеры. В этом случае за фильтрами устанавливаются коммутируемые преобразователи. У таких схем часто наблюдаются проблемы с импульсными помехами.

Также могут происходить короткие замыкания. Проблема кроется в повышении рабочего напряжения. Чтобы исправить ситуацию, нужно заняться выпрямлением тока. Для этого отлично подойдут полевые резисторы. Устанавливать их следует перед блоком питания. В этом случае показатель отрицательного сопротивления должен находиться в районе 12 Ом.

Похожие публикации