Интернет-журнал дачника. Сад и огород своими руками

Центровка электродвигателя и редуктора. Объемный тип устройств. Центровка с применением приспособления с электромагнитным прижимом и индикаторами

Если учесть, что и в быту и на производствах для перекачки воды применяют в основном насосное оборудование центробежного типа, то всеобщий интерес к нему вполне понятен. Технические требования к насосам предъявляются разные, и, соответственно, регламентируют их разные документы. ГОСТ «Центробежные насосы» под номером 54806-2011 представляет собой свод наиболее жёстких требований к насосам, относящимся к I классу.

Именно его мы возьмём за основу. Видео в этой статье, предложенное вашему вниманию для наглядности, покажет, как производится центровка наносов.

Краткий обзор стандарта

Всего существует три класса в классификации насосов. Наименее строгие требования предъявляются к агрегатам III класса, но это не значит, что допускается какая-то возможность снижения качества.

В основном ужесточения или послабления требований связаны с условиями, в которых оборудованию придётся работать. Некоторые сферы применения диктуют особые требования к безопасности эксплуатации.

  • Выбор насоса всегда основан на определённых критериях. Это надёжность, энергоэффективность, необходимые характеристики, а так же конкретные условия эксплуатации — не только рабочие, но и климатические.
  • Учитывая, что промышленное оборудование изготавливается в основном под проект, то многие решения, касающиеся требований к насосу, на заводе принимаются только после согласования с заказчиком.

Требования, представленные в ГОСТ «Насосы центробежные», обязательны для пользования проектировщиками и конструкторами, изготовителями и дилерами. Что касается потребителя, то он должен быть в полной мере информирован о конструктивных особенностях агрегата.

Требования к конструкции насосов

Стандарт, о котором идёт речь, регламентирует правила сборки насосов и основных узлов, их монтажа и техобслуживания. Требования распространяются на опорную раму и вспомогательный трубопровод, но не относятся к приводу.

Изготовление двигателей производится в соответствии с другими документами:

  • Так как производство насосов для промышленности — вещь практически индивидуальная, то нередко допускаются и альтернативные варианты исполнения. Даже если отклонения от данного стандарта и допускаются, то они должны быть согласованы с заказчиком.
  • Особое внимание в стандарте уделяется снижению давления на уплотнение вала и уравновешиванию нагрузок на его ось. Если давление выше 0,35 Мпа, то в одноступенчатых насосах, в тыльной части рабочего колеса, должны быть установлены уплотнительные кольца или специальная крыльчатка (импеллер). Это хорошо видно на фото внизу.


  • В насосах горизонтальных многоступенчатых (см. ) давление уменьшается путём парной установки колёс либо по прямой, но с использованием уравновешивающего диска. Конструкции мощных насосов просчитывают так, чтобы радиус рабочего колеса мог гарантированно предотвратить максимально допустимые уровни вибрации и шума.
  • Механизм должен оснащаться устройством, предупреждающим вращение вала в обратную сторону. К основным сборочным единицам относят корпуса агрегата и подшипника и крышку. Они должны быть выполнены так, чтобы точная ориентация при разборке и повторной сборке своими руками была обеспечена.
  • Для обеспечения надлежащего ресурса насоса изготовитель ориентируется на конкретные, указанные заказчиком условия его установки. Прежде всего, это место: снаружи под навесом или внутри здания; а если в помещении, то отапливаемое оно или нет.

Большое значение имеют такие нюансы, как: агрессивность среды (уровень запылённости); влажность воздуха; температурные показатели — как максимальные, так и минимальные. Данным условиям должны соответствовать сам насос, его узлы и примыкающая арматура.

Предупреждение вибрации

Успешная работа насоса возможна только в том случае, если все вращающиеся детали сбалансированы. Это касается не только вала и колеса, но и ротора двигателя.

Итак:

  • Инструкция в данном стандарте устанавливает обязанность изготовителя произвести демонстрацию способности агрегата работать на постоянной подаче, не превышая вибрационного предела. Ведь цена промышленного насоса не маленькая, а доказать вину производителя в процессе эксплуатации практически невозможно.
  • После того, как агрегат установлен и внедрён в систему, ответственность за возникновение вибраций ложится на потребителя. Поэтому испытания проводятся не только на стенде завода, но и перед запуском на штатном месте, где насос будет эксплуатироваться. Наиболее важную роль при этом играет опорная рама или фундамент, на который устанавливают насос и двигатель.
  • Чаще всего они находятся на одной раме, если, конечно, это . У глубинных агрегатов насос может быть погружен в скважину, а двигатель находиться на поверхности и сообщаться с ним трансмиссионным валом. В любом случае, на плите, предназначенной для опоры механизма, должен быть предусмотрен поддон для сбора и отвода утечек жидкостей, установленный с уклоном 8,5 мм/1м в сторону стока.


  • Все места стыковки деталей наноса, называемые монтажными приливами, должны быть обработаны механически так, чтобы при их соединении размеры зазоров не превышали 0,2 мм/1м стыка. Что касается приводных соединений, то в них должна быть предусмотрена возможность установки прокладок толщиной 1,5-3 мм.
  • Кстати, если двигатель изготавливается на том же предприятии что и насос, то производитель обязан укомплектовать агрегат прокладками из нержавеющей стали. При монтаже оборудования на штатное место и под насосом, и под приводом, должна быть установлена сварная крестовина, блокирующая раму от вертикального перемещения после замоноличивания цементным раствором.


  • В заливаемых вариантах опорных плит предусмотрены специальные отверстия. Их расположение должно быть таким, чтобы обеспечивалась возможность качественного заполнения раствором пространства под рамой. Хотя, фундаментная рама может быть и незаливаемой. В этом случае она сама, а также болтовые соединения должны быть достаточно жёсткими, чтобы противостоять механическим нагрузкам и вибрации.
  • Если мощность двигателя насоса превышает 150 кВт, стандарт предусматривает обязательное выполнение центровки всех приводных элементов винтами. Это значительно облегчает горизонтальное регулирование пространственного положения агрегата. Вертикальное выравнивание выполняется винтами, расположенными по периметру рамы с вешней стороны.

Винтов должно быть минимум шесть для горизонтального насоса и четыре для вертикального. Они воспринимают нагрузку от веса оборудования и должны быть рассчитаны на допускаемый прогиб. Очень важно при этом, чтобы расстояние от рамы до оси вала было минимально возможным.

Подготовка к монтажу

Так как насос не является статичным механизмом, а оснащён вращающимся на высоких скоростях ротором, необходимо прилагать все усилия, чтобы нагрузки, предусмотренные производителем, не были превышены. Для этого должны соблюдаться определённые условия, предлагаемые изготовителем, но согласованные с заказчиком.

  • Одним из таких условий является предмонтажная центровка соединения насоса и привода. Её следует не просто выполнить, но и контролировать в течение всего периода эксплуатации. Далее мы расскажем более подробно, как это делается.
  • Вторым важным условием комфортной работы насоса является регулярная проверка соединений трубопровода. Это наиболее важно, когда выполняется частичный или полный демонтаж элементов системы.

Вертикальные насосы наиболее чувствительны к несоосности, чем горизонтальные. Поэтому для них стандарт устанавливает меньшие допустимые значения крутящих моментов на фланцах. Чрезмерные нагрузки на них приводят к усилению вибрации.

Центровка

Центровка выполняется при установке крупных центробежных, а также поршневых агрегатов. Бытовые насосы в этом не нуждаются, так как у них двигатель и насос заключены в одном корпусе и отцентрованы производителем.

  • Самая ответственная часть предмонтажной подготовки агрегата – это центровка по полумуфтам: насоса и редуктора, или редуктора и электродвигателя. Суть данного действия такова.


  • Один из валов принимают за базовый, чаще всего это вал насоса. Его закрепляют на раме и с помощью штангенциркуля и щупа выверяют зазоры. Затем то же самое проделывают на полумуфте двигателя. При наличии отклонений его вал смещают так, чтобы он принял нужное положение.
  • Делают это путём установки подкладок или смещения самого двигателя. Затем снова проверяют ширину торцевых зазоров. Оси насоса и двигателя совпадут только в том случае, если зазоры на полумуфтах будут одинаковыми.
  • Кстати, центровать элементы агрегата необходимо не только перед первичным запуском, но и после проведения ремонта и технического обслуживания двигателя. Для этого его отсоединяют от насоса и разбирают.
  • При небольшом износе рабочих деталей их не меняют, а просто очищают и промывают керосином. Шейки валов шлифуют, набивают сальник и собирают вновь. После центровки оси вала двигателя и насоса никакой вибрации и шума, а также нагрева сальника и подшипников не должно быть.


  • При установке центробежных насосов, механики придерживаются таких правил: если насос идёт с завода в сборе, то его ротор центруют по валу двигателя, если же насос собирают на опорной раме, то вал ротора двигателя выверяют по нему.

В тех случаях, когда насос соединяется с двигателем через редуктор и промежуточный вал, сначала центруют редуктор и фиксируют его штифтами. Положение валов всех остальных частей агрегата ориентируют уже на него.

Монтаж электродвигателя

Электродвигатель, доставленный к месту установки с завода-изготовителя или со склада, где он хранился до монтажа, или из мастерской после ревизии, устанавливается на подготовленное основание.

В качестве оснований для электродвигателей применяют в зависимости от условий: литые чугунные или стальные плиты, сварные металлические рамы, кронштейны, салазки и т. д. Плиты, рамы или салазки выверяются по осям и в горизонтальной плоскости и закрепляются на бетонных фундаментах, перекрытиях и т. п. при помощи фундаментных болтов, которые заделываются в заготовленные отверстия. Эти отверстия обычно оставляют при бетонировании фундаментов, закладывая заблаговременно в соответствующих местах деревянные пробки.

Отверстия небольшой глубины могут быть также пробиты в готовых бетонных основаниях при помоши электро и пневмомолотков, оснащенных высокопроизводительными инструментами с наконечниками из твердых сплавов. Отверстия в плите или раме для закрепления электродвигателя обычно выполняются на заводе-изготовителе, который поставляет общую плиту или раму для электродвигателя и приводимого им механизма.

В случае, если отверстия для электродвигателя отсутствуют, на месте монтажа производится разметка основания и сверление отверстий. Для выполнения этих работ определяются монтажно-установочные размеры устанавливаемого электродвигателя (смотрите рисунок), а именно: расстояние между вертикальной осью двигателя и торцом вала L6+L7 или торцом насаженной полумуфты, расстояние между торцами полумуфт на валах электродвигателя и приводимого им механизма, расстояние между отверстиями в лапах вдоль оси электродвигателя С2+С2, расстояние между отверстиями в лапах в перпендикулярном направлении С+С.

Кроме того, должна быть замерена высота вала (высота оси) на механизме и высота оси электродвигателя h. В результате этих последних двух замеров предварительно определяется толщина подкладок под лапы.

Рис. Обозначения установочных размеров двигателя.

Для удобства центровки электродвигателя толщина подкладок должна предусматриваться в пределах 2 - 5 мм. Подъем электродвигателей на фундаменты выполняется кранами, талями, лебедками и другими механизмами. Подъем электродвигателей весом до 80 кг при отсутствии механизмов может выполняться вручную с применением настилов и других устройств. Установленный на основание электродвигатель центрируется предварительно с грубой подгонкой по осям и в горизонтальной плоскости. Окончательная выверка производится при сопряжении валов.

Центровка электродвигателей

Электродвигатель, установленный на опорную конструкцию, центрируется относительно вала вращаемого им механизма. Способы центровки бывают различные в зависимости от типа передачи. От точности выверки зависит надежность работы электродвигателя и главным образом его подшипников.

Ременная передача

При ременной и клиноременной передачах необходимым условием правильной работы электродвигателя с приводимым им во вращение механизмом является соблюдение параллельности их валов, а также совпадение средних линий (по ширине) шкивов, так как иначе ремень будет соскакивать. Выверка производится при расстояниях между центрами валов до 1,5 м и при одинаковой ширине шкивов с помощью стальной выверочной линейки.

Линейка прикладывается к торцам шкивов и производится подгонка электродвигателя или механизма с таким расчетом, чтобы линейка касалась двух шкивов в четырех точках.

При расстоянии между осями валов более 1,5 м, а также в случае отсутствия выверочной линейки соответствующей длины выверка электродвигателя с механизмом производится с помощью струны и временно устанавливаемых на шкивы скоб. Подгонка производится до получения одинакового расстояния от скоб до струны. Выверка валов может производиться и с помощью тонкого шнурка, натягиваемого от одного шкива к другому.

Выверку электродвигателя и машины со шкивами разной ширины производят, исходя из условия одинакового расстояния от средних линий обоих шкивов до струны, шнурка или выверочной линейки.

Выверенный электродвигатель должен быть надежно закреплен болтами с последующей проверкой точности выверки, которая при закреплении электродвигателя может быть случайно нарушена.



Выверка валов при ременной и клиноременной передачах. а - с помощью выверочной линейки; б - с помощью скоб и струны; в - с помощью шнурка; г - с помощью линейки при шкивах разной ширины.

Непосредственное соединение муфтами.

Центровка двигателя с механизмом необходима для достижения такого взаимного положения валов двигателя и механизма, при котором величины зазоров между полумуфтами будут равны. Это достигается путем передвижения двигателя на небольшие расстояния в горизонтальной и вертикальной плоскостях.

Перед центровкой производится проверка прочности посадки полумуфт на валы путем обстукивания полумуфты при одновременном ощупывании рукой стыка полумуфты с валом.

Центровка производится в два приема: сначала предварительная - с помощью линейки или стального угольника, а затем окончательная - по центровочным скобам.

Предварительная центровка ведется путем проверки отсутствия просвета между ребром приложенной линейки (стального угольника) и образующими обеих полумуфт. Такая проверка выполняется в четырех местах: вверху, внизу, справа и слева.

Во всех случаях при центровке обращается внимание на то, чтобы количество отдельных прокладок под лапами электродвигателей было как можно меньше; тонких прокладок толщиной 0,5 - 0,8 мм применяют не более 3 - 4 шт.

Если по условиям центровки их оказывается больше, то их заменяют общей прокладкой большей толщины. Большое количество прокладок, и тем более из тонких листов, не обеспечивает надежного закрепления электродвигателя и может вызвать нарушение центровки; оно также представляет неудобство при последующих ремонтах и центровках во время эксплуатации.

Особенности ремонта насосов консольного типа.

Разборку насоса начитают со съема болтов с полумуфт и проверки центровки. Отсоединяют всасывающий и нагнетательный трубопроводы, электродвигатель. Сняв всасывающий трубопровод и крышку рабочего колеса, можно освободить рабочее колесо, снять с его обода уплотняющее кольцо. Замерив, диаметры колец заносят данные в формуляр.

Отсоединив крышку механического уплотнения, можно освободить грундбуксу и снять втулку с ротора насоса. Далее снимают крышки шарикоподшипников и извлекают ротор вместе с шарикоподшипниками. С помощью съемника с ротора снимают полумуфту, освобождают маслоотбойный щиток и снимают шарикоподшипники. Из корпуса извлекают уплотнения, буксу, дроссельную втулку и набивку.

Ротор насоса проверяют в местах посадки полумуфты, шарикоподшипников, втулки, рабочего колеса, а также резьбы под гайки крепления колеса и шарикоподшипников. Выработку шеек ротора по овальности и конусности не должна превышать 0,015 мм и устраняется проточкой и шлифовкой шеек до шероховатости поверхности не более 0,03 мм . Установив ротор в центрах, с помощью индикатора проверяют биение; оно не должно превышать для различных участков ротора 0,02 – 0,05 мм . При биении, превышающем допустимое, необходимо проточить поверхность.

Рабочее колесо насоса подвергают визуальному осмотру и при необходимости зачищают, шлифуют поверхности. В подшипниках проверяют ширину зазора между внешней обоймой и телами качения; он должен быть в пределах 0,015 – 0,03 мм . Диаметр расточки под внешнюю обойму подшипника не должен увеличиваться в результате износ более чем на 0,035 – 0,04 мм. Фактические замеры заносят в формуляр.

Детали уплотнения подвергают осмотру и при необходимости зачищают поверхности. Механическую набивку заменяют. Зазор между дроссельной втулкой и втулкой вала должен быть в пределах 0,55 - 0,70 мм. При необходимости осуществляют проточку дроссельной втулки по внутреннему диаметру или же проточку и шлифовку втулки вала по внешнему диаметру. Результаты измерений фактических зазоров в деталях уплотнения заносят в формуляр. Уплотнение по рабочему колесу выполняют кольцами при зазоре между ними 0,45 – 0,65 мм .

Сборку насоса проводят в порядке, обратном разборке. Сборку завершают присоединением всасывающего патрубка и электродвигателя. Проверяют центровку валов насоса и электродвигателя. Смещение осей не должно превышать 0,05 мм , а перекос осей - 0,012 мм на 1 м длины.

Особенности ремонта насоса с двухсторонним рабочим колесом .

Разборку насоса выполняют в определенной последовательности. Снимают грундбуксы и крышки сальников, извлекают набивку. Разбирают крепежные детали и снимают крышку с корпуса насоса. Разбирают и снимают кожух муфты соединения насоса с редуктором. Подшипники демонтируют, начиная с крышек; затем снимают верхний вкладыш и проверяют радиальные и осевые зазоры в лабиринтных уплотнениях, а также диаметральные и боковые зазоры в опорных подшипниках; заполняют формуляр. С помощью индикаторов проверяют осевой разбег ротора, после чего разбирают нижнюю половину упорного подшипника.

Зафиксировав зазоры в уплотнениях колеса, снимают ротор, с которого удаляют упорный диск и обоймы лабиринтных уплотнений. После отворачивания гаек извлекают втулку сальниковых уплотнений. Разборку насоса завершают снятием колес с ротора.

Ремонт насоса сводится в основном к устранению дефектов подшипников и уплотнений и к ревизии ротора.

У подшипников контролируют состояние баббитовой поверхности. Суммарная площадь дефектов на рабочей поверхности вкладыша не должна превышать 15% общей площади заливки. При нормальном прилегании вкладышей к шейкам вала на квадрате размером 100х100 мм должно быть не менее 15 пятен краски; в противном случае вкладыши должны быть пришабрены. Диаметральный зазор в опорном подшипнике должен быть в пределах 0,09 – 0,14 мм , боковой - в пределах 0,06 – 0,09 мм . Зазоры регулируют с помощью прокладок.

Нормальное прилегание упорного подшипника характеризуется наличием не менее 8 – 10 пятен краски на квадрате 25х25 мм . Разнотолщинность колодок упорного подшипника должна быть не более 0,02 мм ; биение рабочей поверхности упорного диска также должно быть не более 0.02 мм .

Лабиринтные уплотнения не должны иметь повреждений, радиальные зазоры в уплотнениях должны находиться в пределах 0,09 – 0,18 мм , а осевые - 0,8 – 1,0 мм . Такие зазоры достигаются изменением положения обоймы на роторе, проточкой обоймы или ее заменой. Радиальные зазоры уплотнения рабочего колеса должны находиться в пределах 0,3 – 0,6 мм .

Ротор в сборе контролируют на биение; значения его допускаются на различных участках ротора от 0,01 до 0,05 мм ; полученные значения заносят в формуляр.

При овальности или конусности шеек, превышающей 0,015 мм , они должны быть прошлифованы до ремонтного диаметра; при этом шероховатость шеек должна быть не более 0,32.

Посадочные места ротора должны быть без рисок, забоин, задирав. Номинальный натяг при посадке на ротор упорного диска и рабочего колеса должен быть равен 0,1 мм .

Ротор должен быть подвергнут цветной или ультразвуковой дефектоскопии, а в сборе – статической балансировке на призмах.

При сборке предварительно собирают узел ротора. На ротор насаживают рабочее колесо и закрепляют поджимающими гайками. Устанавливают втулки сальниковых уплотнений, положение которых также фиксируют гайками. Затем на ротор надевают дроссельные втулки, крышки и буксы сальников. Обоймы лабиринтных уплотнений устанавливают с осевым зазором 0,8 – 1,0 мм и радиальным 0,00 – 0,18 мм . Фактические зазоры заносят в формуляр. На ротор устанавливают полумуфты и упорный диск, после чего проверяют биение упорного диска и осевой разбег ротора; он должен быть в пределах 0,20 – 0,45 мм .

Собирают нижнюю часть упорного подшипника, устанавливают нижние вкладыши опорных подшипников, после чего укладывают ротор в подшипники и проверяют фактические боковые зазоры. Номинальные значения бокового зазора 0,06 – 0,09 мм , диаметрального - 0,09 – 0,14 мм.

В нижнюю и верхнюю половины корпуса насоса заводят уплотняющие кольца и закрепляют их винтами. Радиальные зазоры в уплотнениях по колесу должны быть в пределах 0,3 – 0,6 мм ; их фактические значения заносят в формуляр.

Закрывают крышку корпуса, заменяют набивку сальника и закрепляют буксы сальников. Проверяют центровку валов насоса и редуктора по полумуфтам. Параллельное смещение осей не должно превышать ±0,5 мм, а допускаемый излом осей - 0,12 мм на 1 м длины.

Центровка насосов

Центровка производится в два приема: предварительная – при помощи угольника, линейки или щупа, окончательная - по индикатору (рис.)

Ось вала насоса приводится в проектное положение, и насос закрепляется. Данные центровки записывают в круговую диаграмму (см. схему центровки, рис.); радиальные зазоры записывают вне круга, торцовые внутри.

Скобы ставят в положение 1, измеряют радиальные и осевые зазоры и заносят в диаграмму; таким же образом делают измерения в положениях 11 (90 о), 111 (180 о) и (270 о).

Зазоры в положениях 1 и 111 показывают, на какую величину конец вала двигателя лежит выше или ниже конца вала насоса; зазоры в положениях 11 и 1У показывают, насколько двигатель сдвинут вправо или влево в горизонтальной плоскости.

Рис. 8.48 Центровка осей двигателя и насоса при помощи индикатора: 1 – индикатор, 2 – вторая планка, 3 - вилкодержатель, 4 – болт, 5 – первая планка, 6 – винт, 7 – планка хомута правая, 8 – планка для проверки смещения, 9 – планка хомута левая, 10 – полухомут, 11 – гайка, 12 – болт,

Перемещение вала двигателя по отношению насоса и толщину прокладок под лапы определяют по данным, приведенным в табл. 8.42

Если в результате подсчета величины УА и УВ получаются со знаком (-), то подкладку под данными лапами следует уменьшить на полученную величину.

Допустимые отклонения центровки (размеры в мм )

Таблица 8.42. Данные для определения толщины подкладок под лапы электродвигателя


Примечание: ΔА – толщина подкладок для передних лап;

ΔВ - толщина подкладок для задних лап;

Δ – разность радиальных зазоров в верхнем и нижнем положениях центровочного приспособления;

а - разность осевых зазоров в верхнем и нижнем положениях центровочного приспособления;

l - расстояние между центрами отверстий передних и задних лап двигателя;

g - двойное расстояние от оси вала до центра индикатора, измеряющего осевой зазор.

В насосном деле центрирование означает, что ось насоса совмещена с осью приводного вала. Хотя такое центрирование всегда принималось во внимание у насосов с набивкой, в герметичных насосах это был крайне важный параметр, особенно, если использовались конструкции с вращающимися уплотнениями, где пружина или сильфон вращается вместе с валом.

Небольшое смещение от соосности на приводной части насоса приводит к большому смещению в мокрой части, и, к сожалению, это как раз то место, где в большинстве случаев находится уплотнение.

Несоосность может стать причиной многих проблем:

Это может привести вращающееся механическое уплотнение к осевому движению вперед и назад (дважды за один оборот). Чем больше уплотнение двигается, тем больше возможностей для прилегающих поверхностей находиться открытыми.
- При использовании набивки может быть допущена несоосность. При использовании механического уплотнения - нет.
- Несоосность приведет к серьезному истиранию вала или втулки, если вы используете подпружиненный Тефлон в качестве вторичного уплотнения в вашем торцевом уплотнении.
- Подшипники насоса будут перегружены
- Несоосность может быть такой, что приведет к контакту между вращающимися и неподвижными компонентами уплотнения:
- Возможность контактирования противоизносных колец
- Контакт вала и ограничивающей втулки часто встречается на конце коробки сальника
- Вал или втулка могут соприкасаться с неподвижной поверхностью механического уплотнения
- Контакт вала и втулки в API уплотнении может быть катастрофичным
- Рабочее колесо может касаться улитки или задней крышки

Независимо от метода центрирования, который вы выберете, вам необходимо начать с того, чтобы насос и привод были в хорошем рабочем состоянии. Идеально центрированный кусок хлама, все еще кусок хлама. Также необходимо проконтролировать следующее:

Чтобы вал был динамически отбалансирован
- Противоизносные кольца надлежащего качества с правильным зазором
- Точный зазор между рабочим колесом и улиткой или задней крышкой
- Устранение "не плотно прилегающей опоры"
- Устранение напряжений в трубопроводе
- Установка на вал качественных подшипников с соответствующей обработкой поверхностей и зазорами
- Установка хорошего торцевого уплотнения с необходимой нагрузкой на рабочую поверхность. Чем ближе уплотнение к подшипнику насоса, тем лучше.

Все операции по центрированию привода и насоса состоят из четырех частей:

Вам необходимо выровнять насос и привод. Если насос не установлен должным образом, то уровень масла будет неточным, что приведет к проблемам подшипникового узла.

Затем сделайте серию осевых и радиальных измерений, чтобы увидеть, где находится насос по отношению к приводу (двигателю).

Сделайте расчеты, чтобы посмотреть, как далеко должна быть сдвинута ось насоса к центральной оси двигателя. Эти расчеты должны учитывать, что рабочая температура насоса и привода, возможно, будет отличаться от температуры окружающей среды, когда вы снимаете показания.

Большинство производителей насосов должны иметь возможность предоставить вам необходимые данные для центрирования в рабочем режиме. Они единственные, кто знает, как их детали расширяются и сжимаются при изменении температуры.

Вам необходимо иметь представление о регулировочных шайбах, когда для центрирования потребуется перемещать привод. Большинство малых конструкций насосов не оборудованы домкратными болтами, поэтому центрирование может оказаться сложной операцией. Вы не можете двигать насос, т.к. он соединен с трубопроводом.

Мы видим множество насосов, которые никогда не были совмещены должны образом. Когда вы говорите с людьми, которые должны быть в этом заинтересованы, вы получаете следующие комментарии:

Центрирование не важно. Я работал с насосами в течение многих лет и мы никогда не делали ничего такого на этом предприятии. И мы не будем делать динамический баланс вращающегося узла.

Нет времени делать центрирование. Производство требует агрегат обратно в процесс, и мне не дадут время, чтобы сделать это должным образом.

Мы приобретаем хорошие муфты. Производитель заявляет, что их муфты допускают разумную величину несоосности.

Оказывается, что существует, по меньшей мере 3 способа получения хорошего центрирования насоса и привода, и качественная муфта не является одним из них. Муфта используется для передачи крутящего момента к валу и компенсации осевых температурных расширений, но не более. Вы устанавливаете качественное уплотнение после того, как сделали центрирование, а не вместо самого центрирования.

Вот некоторые допустимые методы:

Является приемлемым, но для этого необходимо много времени. Если вы заинтересованы в том, как это сделать:

Очень точно, особенно для фланцев с небольшим диаметром
- Не подвергать осевым смещениям
- Может использоваться с установленной гибкой муфтой
- Вы должны вращать оба вала

Лазер - последний метод, а также наиболее популярный.

"C" или "D" образная скоба , скорее всего является самым простым из всех методов и доступна у многих производителей качественных насосов. Она решает большинство проблем с температурным расширением. Вы используете обработанное, зарегистрированное приспособление, чтобы обеспечить соосность.

Центровка с помощью индикаторов

Используйте этот метод, если один из валов нельзя повернуть
- Отличный способ для валов с большим диаметром (200 мм и больше), а также, если диаметры равны или больше, чем расстояние от кронштейна до датчика, где снимаются показания.
- Не слишком хороший способ, если присутствует осевое перемещение от втулки или подшипника скольжения.

Учитывая выбор, можно посоветовать использовать "C" или "D" образные скобы.

- "С" образные для дюймовых размеров. "D" образные для метрических размеров.
- В автомобильной промышленности используют ту же самую концепцию, когда центрируют трансмиссию с двигателем. Там такая скоба называется "колоколообразный картер".
- Изначально идея была разработана для судостроения, где было невозможно установить двигатель и насос на борт корабля, и уже затем проводить центрирование. Корпус прогибается, делая обычное центрирование неэффективным. То же самое применимо к морским буровым установкам.
- скоба лучше выравнивает передачу тепла между насосом и приводом. Оно не должно проходить только через вал.
- Скобы можно использовать для насосов с односторонним всасыванием разного рода качества.
- При наличии выбора используйте ковкие скобы, а не литые.
- Скоба решает проблему отсутствия времени для центрирования.

В практике электромонтажных организаций применяют ряд способов центровки валов. Скажем сразу, что в данной статье не рассматриваются современные, ультрамодные - лазерные системы центровки валов, имеющие достаточно высокую стоимость. В статье дается обзор способов центровки и приспособлений, доступных для изготовления собственными силами, которыми пользовались в СССР и которые популярны посей день. К таким системам центровки относятся: при помощи одной или двух пар радиально-осевых скоб, центровка валов по полумуфтам, центровка с применением приспособления с электромагнитным прижимом и индикаторами, центровка способом "обхода одной точкой". Ниже в той же последовательности рассматриваются все указанные способы, а также применяемые при этом приспособления.

Этот способ получил наибольшее распространение в монтажной практике.

Конструкция радиально-осевых скоб и их крепление показаны на рисунке 1.

Наружную скобу 1 закрепляют на 2 установленной машины, а внутреннюю скобу 3 - на полумуфте 4 машины, которая должна быть соединена с установленной. Скобы крепят при помощи хомутов 5 и болтов 6 . В процессе центровки измеряют боковые зазоры a и угловые зазоры b при помощи щупов, или . В двух последних случаях индикатор или микрометрическую головку устанавливают на место болтов 7 и 8 .

Перед началом измерения полумуфты должны быть разъединены, а валы раздвинуты с тем, чтобы скобы и полумуфты при вращении валов не прикасались. Для большей точности измерений при помощи болтов устанавливают минимальные зазоры a и b .

Независимо от способа проверки соосности валов зазоры между плоскостями полумуфт или между остриями радиально-осевой скобы измеряют щупом таким образом, чтобы пластинки щупа входили в зазор с ощутимым трением и на глубину не менее 2/3 своей длины (практически до 20 мм). Ввиду того что при замерах щупом неизбежны погрешности, величина которых зависит от опытности исполнителя, результаты измерений следует контролировать. При правильных замерах сумма числовых значений четных замеров равняется сумме числовых значений нечетных замеров, то есть

a 1 + a 3 = a 2 + a 4 и b 1 + b 3 = b 2 + b 4 .

В противном случае, не изменяя положения полумуфт, измерения следует повторить более тщательно.

На рисунке 2 показаны четыре взаимных положения валов машин.


Рисунок 2. Взаимные положения валов машин

В положении А валы расположены на одной прямой, и центры их совпадают. Очевидно, что при одновременном проворачивании валов зазоры a и b должны оставаться неизменными.

В положении Б валы параллельны один другому, но между ними есть сдвиг. При проворачивании валов угловые зазоры b остаются неизменными, а боковые зазоры a изменяются.

В положении В центры валов совпадают, но оси их расположены под углом. В этом случае при проворачивании валов меняются величины угловых зазоров b , а боковые зазоры сохраняются.

Наконец, в положении Г центры валов сдвинуты и оси их расположены под углом. При проворачивании валов будут изменяться величины как угловых b , так и боковых зазоров a .

Первое измерение зазоров a 1 и b 1 производят, когда скобы находятся в верхнем положении. Затем валы проворачивают на 90° в направлении вращения приводного механизма или генератора и снова замеряют зазоры a 2 и b 2 при совпадении рисок на валах. Всего делают четыре замера при каждом повороте валов на 90°. Пятый замер выполняют как контрольный, когда скобы снова приходят в верхнее положение. Величина зазоров в первом и пятом положениях скоб должны совпадать.

Действительной величиной зазоров a и b в данной точке будет полусумма соответствующих зазоров, измеренных при двух замерах в этой точке. В зависимости от массы роторов проворот валов осуществляют либо вручную, либо при помощи крана.

Проворот вала у электрических машин небольшой мощности производят вручную без каких-либо приспособлений.
Для проворота вручную вала крупной или средней машины рекомендуется применять специальное приспособление, показанное на рисунке 3. Оно состоит из рычага 1 , ленты 2 и зажима 3 для ленты.

Проворот вала с помощью крана (рисунок 4) осуществляют при монтаже крупных электрических машин мощностью 1000 кВт и более. В этом случае на вал 1 навивают несколько витков каната 2 с петлями 3 и 4 на концах. Петлю 3 зацепляют за болт 5 , проходящий через отверстие полумуфты, а петлю 4 прикрепляют к крюку крана, которым при помощи каната 2 вращают вал 1 .

Перед измерениями (после того, как валы провернуты на требуемый угол) канат должен быть ослаблен. Чтобы исключить возможность сближения или расхождения полумуфт при провороте валов (осевой ход), последние необходимо запереть специальными упорами (рисунок 5).

Рисунок 5. Запирающий упор

Иногда, если валы агрегата расположены близко к фундаменту, измерять зазор между полумуфтами внизу затруднительно или невозможно. В таких случаях зазоры измеряют только в трех точках, то есть сверху и по бокам, а величину зазора в недоступном месте определяют подсчетом, исходя из того, что сумма зазоров "верх" плюс "низ" равна сумме зазоров "бок 1 " плюс "бок 2 ". При неизвестном зазоре между полумуфтами снизу это равенство пишут так: b 1 + x = b 2 + b 4 , откуда неизвестный зазор x = (b 2 + b 4) - b 1 .

После подстановки в это равенство числовых значений боковых и верхнего зазора определяют неизвестный зазор снизу.

После каждого перемещения валов в том или ином положении все последующие измерения выполняют лишь после надежного прикрепления лап двигателя или стоек подшипников к фундаментным плитам. В противном случае при подтяжке болтов после измерения центровка будет нарушена.

Зазоры между плоскостями полумуфт измеряют щупом в одних и тех же точках. Для этого на ободах полумуфт наносят риски 1 с буквенными обозначениями верха В , низа Н и боков Б (рисунок 6).

Пример. На рисунке 7, а записаны значения измеренных зазоров (в миллиметрах) для четырех положений валов. Величины боковых зазоров написаны над окружностью, а угловых - внутри окружности. Цифры в обозначениях зазоров a 1 , a 2 , a 3 , a 4 показывают порядковые номера замеров зазоров.


Рисунок 7. К примеру центровки валов при помощи одной пары радиально-осевых скоб

На рисунке 7, б указаны размеры (в миллиметрах) присоединяемой машины: расстояние от муфты до подшипника 3 l 1 = 300 мм; расстояние от муфты до подшипника 4 l 2 = 1600 мм; расстояние от оси вала до болта 5 r = 350 мм.

Для обеспечения центровки валов необходимо смещать подшипники 3 и 4 присоединяемой электрической машины (мощностью более 1000 кВт), передвигая их по плите или перемещая в вертикальной плоскости посредством добавления или убавления подкладок под стойками подшипников.

Введем следующие обозначения:
x 1 и x 2 - горизонтальное перемещение подшипников 3 и 4 по плите вправо (рисунок 7, в ), если перед x 1 и x 2 стоит знак (+), и влево, если стоит знак (-); смотреть надо на торец муфты (со стороны установленной машины);
y 1 и y 2 - вертикальное перемещение подшипников 3 и 4 вверх, если перед y 1 и y 2 стоит знак (+) и вниз, если стоит знак (-).

Следовательно, подшипник 3 надо поднять вверх на 0,23 мм и передвинуть вправо (знак "+") на 0,16 мм; подшипник 4 следует поднять на 0,82 мм и передвинуть вправо (знак "+") на 0,87 мм (смотрите рисунок 7, в ).

Из рисунка 7, а видно, что сумма четных замеров горизонтальных и вертикальных зазоров равна сумме нечетных. Действительно:

a 1 + a 3 = a 2 + a 4 = 1,42 мм; b 1 + b 3 = b 2 + b 4 = 1,48 мм.

Пользуясь этим равенством, можно проверить результаты измерений зазоров. Если суммы не сходятся, очевидно, прогибается скоба или валы имеют осевые перемещения, которые должны быть устранены.

При угловых смещениях валов, то есть когда a 1 + a 3 больше или меньше a 2 + a 4 (или b 1 + b 3 больше или меньше b 2 + b 4), для центровки рекомендуется применять две пары скоб, сдвинутых одна относительно другой на 180°, как показано на рисунке 8, а , причем одной парой скоб измеряют боковые и угловые зазоры, а другой - только угловые. Обе пары скоб должны измерять угловые зазоры на одинаковом радиусе (расстоянии от оси).


Рисунок 8. Центровка валов при помощи двух пар радиально-осевых скоб

Измерения производят, как и при предыдущем способе, при последовательном провороте обоих роторов на 0, 90, 180 и 270°.

На рисунке 8, б приведена схема с буквенными названиями замеряемых зазоров. На рисунке 8, в показаны четыре положения, при которых производят замеры. Так, например, в положении II замеряют два угловых зазора b II 4 и b II 2 , а также один боковой зазор a 2 ; в положении III - b III 1 и b III 3 и a 3 и так далее. Затем определяют результирующие угловые зазоры, которые равны полусумме двух угловых зазоров, замеренных в одной и той же точке одной, а затем другой парой скоб, то есть


Необходимые перемещения y 1 и y 2 ; x 1 и x 2 определяют по формулам, приведенным выше (в случае центровки одной парой скоб), подставляя в них значения результирующих угловых зазоров b 1 и b 2 ; b 3 и b 4 .

Одна из разновидностей скоб для центровки валов по полумуфтам приведена на рисунке 10, в , в статье " " и рисунке 9 расположенном ниже. В скобу ввернут измерительный болт с контргайкой. Боковые зазоры a измеряют при помощи щупа между измерительным болтом и внешней поверхностью полумуфты (вместо измерительного болта можно применять индикатор), а угловые зазоры b - между торцами полумуфт.

В каждом положении полумуфт (0, 90, 180 и 270°) замеряют один боковой замер и два или четыре угловых зазора. Средние значения угловых зазоров при нескольких замерах определяют как среднее арифметическое путем деления суммы числовых значений зазоров на количество замеров (два или четыре).

Перемещения y 1 и y 2 ; x 1 и x 2 подсчитывают по формулам, приведенным в случае центровки одной парой скоб, подставляя в них средние значения осевых зазоров b 1 и b 2 , b 3 и b 4 .

При центровке по полумуфтам следует иметь в виду, что точность центровки жестких муфт, имеющих подвижные соединения (зубчатые муфты), может быть меньшей, чем точность центровки эластичных муфт. Поэтому у муфт с подвижными соединениями при каждом измерении необходимо убедиться в отсутствии заклинивания. Это выполняют при помощи рычага, которым проверяют наличие свободного углового перемещения соединенных частей в обе стороны.

Центровка с применением приспособления с электромагнитным прижимом и индикаторами

Приспособление, изображенное на рисунке 10, было разработано в СССР, Московским проектно-экспериментальным отделением (МОПЭО) института Тяжпромэлектропроект. По своей конструкции это приспособление позволяет производить измерения при центровке валов как индикаторами, так и пластинчатым щупом.


Рисунок 10. Центровка валов при помощи приспособления с электромагнитным прижимом и индикаторами.
1 - угольник; 2 - индикаторы; 3 - держатели; 4 - установочный винт; 5 - магнитопровод; 6 - катушки ; 7 - цилиндрические пальцы (шарнир); 8 - поворотные башмаки полюса; 9 - обод полумуфты

Приспособление состоит из двух П-образных электромагнитов, питающихся от батареек карманного фонаря и снабженных шарнирными полюсными башмаками, которыми оно удерживается на ободах полумуфт центрируемых валов. Форма полюсных обеспечивает прилегание их к ободам полумуфт независимо от диаметра последних.

Установка двух индикаторов непосредственно на приспособлении позволяет выполнять измерения одновременно в горизонтальной и вертикальной плоскостях и с большей точностью чем при измерениях индикаторами, укрепленными на штативах, когда мерительный штифт индикатора скользит по грубообработанным поверхностям обода и торца полумуфт. При отсутствии индикаторов приспособление позволяет произвести измерения щупом. Для этого в держателе 3 индикаторов устанавливают мерительный штифт, подобный установочному винту 4 .

Центровка способом "обхода одной точкой"

В тех случаях, когда один из валов не может проворачиваться при центровке, зазоры между плоскостями полумуфт можно измерять и при вращении только одного вала. Для этого применяют специальное приспособление 2 , прикрепляемое к полумуфте вала 1 , который может вращаться (рисунок 11), или скобы показанные на рисунке 10, б и в , в статье "Точные измерительные инструменты и приборы, используемые при центровке валов электрических машин ". Такой способ получил название способа "обхода одной точкой".

В этом случае боковое смещение a контролируют щупом по зазору между штифтом 4 приспособления 2 и ободом полумуфты 5 , установленной на валу 6 . Угловое смещение b измеряют при помощи щупа 7 по зазору между торцами полумуфт 3 и 5 .

При монтаже электрических машин мощностью более 500 кВт могут иметь случаи центровки машин с одноопорным валом или соединения с механизмами, имеющими зубчатую передачу. Ниже приводятся рекомендации по выполнению этих работ.

Центровка машин с одноопорным валом

В этом случае прицентровываемый (одноопорный) вал одним концом опирается на предварительно выверенный подшипник, а другой конец его располагают так, чтобы выступ одной полумуфты попал в выточку другой. Это соединение полумуфт, как указывалось в статье " ", называется фланцевым и показано в указанной статье на рисунке 1, а .

Таким образом, прицентровываемый одноопорный вал опирается одним концом на поясок полумуфты, а другим - на свой подшипник. Между торцами полумуфт оставляют небольшой осевой зазор 1 - 2 мм. Во время центровки обе полумуфты соединяют двумя-тремя болтами, диаметр которых несколько меньше, чем диаметр болтов муфты. Болты точно пригоняют по отверстиям полумуфт. Затем производят прицентровку по полумуфтам, как и в случае двухопорных валов. Необходимые перемещения подсчитывают по тем же формулам, что и при центровке двухопорных валов одной парой скоб.

После центровки следует проверить правильность выполнения этой операции, так как в результате неравномерной затяжки болтов, неточной обработки торцов полумуфт и так далее могут возникнуть перекосы и может быть нарушена центровка.

Для проверки на шейке одноопорного вала устанавливают два индикатора: один в вертикальной плоскости, а другой в горизонтальной, прикрепив их к подшипнику (по месту), и замечают показания индикатора, установленного в вертикальной плоскости. Затем при помощи приспособления (рисунок 12) приподнимают конец вала, извлекают нижний вкладыш подшипника и возвращают конец вала в прежнее положение; индикатор установленный в вертикальной плоскости, должен дать прежнее показание. Проворачивая ротор на 0, 90, 180 и 270°, определяют величину биения концов вала по индикатору, установленному в горизонтальной плоскости.

Правильность центровки и соединения полумуфт определяют по величине биения конца вала.

При отсутствии технических условий завода-изготовителя следует руководствоваться следующими предельно допустимыми величинами биения конца вала в зависимости от быстроходности машины:

Центровка валов электрических машин с зубчатой передачей

В этом случае за базу прицентровки принимается редуктор, а все перемещения производят за счет электрической машины, прицентровываемой к редуктору. При этом следует учитывать, что вал ведущего колеса редуктора при работе обычно поднимается на величину вертикального зазора в подшипниках, поэтому вал прицентровываемой электрической машины устанавливают выше вала зубчатого колеса на упомянутую величину вертикального зазора.

В практике электромонтажных организаций имеют место случаи, когда вал 1 приводного электродвигателя соединяется с валом 4 редуктора с помощью промежуточного вала, не имеющего подшипников, как это показано на рисунке 13. Такие случаи, в частности, имеют место при соединении приводного двигателя с редуктором клети на прокатных станах.

Длина промежуточного вала достигает 1,5 - 2 м и непосредственная проверка взаимного приводного двигателя и редуктора с помощью щупа, индикатора или другого в таких случаях невыполнима. Для этого наиболее простым способом является центровка валов при помощи специально изготовленных угольников 2 и визирной струны 3 (рисунок 13).

Внешние стороны каждого угольника должны быть простроганы под углом 90°. Угольники крепят одной стороной к торцевым плоскостям полумуфт, а по другим их сторонам натягивают струну из стальной тонкой проволоки. По струне и угольникам измеряют как боковые, так и угловые смещения валов двигателя и редуктора. Для крепления угольников к плоскостям полумуфт и для натяжки визирной струны применяют болты с гайками. При выборе диаметра болтов и затяжке гаек следует учитывать, что любое по величине перемещение болтов в отверстиях полумуфт в процессе проворачивания валов может привести к неправильным замерам и неудовлетворительному качеству центровки.

Центровка валов многомашинных агрегатов

В многомашинных агрегатов прокатных станов, насчитывают до пяти соединенных между собой электрических машин, весьма важным условием является центровка (выверка ) в процессе монтажа агрегата. В трех- и пятимашинных тихоходных преобразовательных агрегатах в качестве приводных машин применяют синхронные двигатели нормального исполнения, подшипники которых не рассчитаны на дополнительные нагрузки от якорей генераторов, имеющих только по одному собственному подшипнику.

Для разгрузки подшипников приводного двигателя от дополнительных нагрузок на них, вызванных подвеской валов якорей генераторов, завод "Электросила" имени С. М. Кирова (сегодняшнее название завода "Электросила" - ОАО "Силовые машины ") впервые предложил применять новый метод выверки линии валов машин в таких агрегатах.

Сущность состоит в том, что для равномерного распределения нагрузок на подшипники агрегата предусматривается установка отдельных валов в такое взаимное расположение, при котором плоскости фланцев (рисунок 14) имели бы некоторый угловой развал, заданный расчетом. Так, например, в трехмашинном преобразовательном агрегате, состоящем из синхронного двигателя и двух генераторов , предназначенных для питания приводных двигателей блюминга, завод "Электросила" предложил установить общую линию валов так, чтобы между плоскостями фланцев соединения А (рисунок 14) был зазор 0,6 мм, а торцевые плоскости фланцев соединения Б были параллельны.


Рисунок 14. Схема выверки трехмашинного агрегата.
I , III - генераторы; II - приводной двигатель

Одновременно для таких агрегатов заводом-изготовителем указываются величины нагрузок на подшипники, определенные расчетным методом.

Как правило, электрические машины указанных агрегатов поступают к месту монтажа в разобранном виде. Перед началом работ по выверке линии валов многомашинных агрегатов устанавливают и выверяют фундаментные плиты, затягивают анкерные болты, устанавливают стойки подшипников, статоры и нижние полустанины, заводят роторы в статоры, а в машинах постоянного тока - якоря. Кроме того, необходимо выполнить следующие подготовительные работы:
- ознакомиться с заводским эскизом агрегата. На эскизе должны быть указаны номера машин, подшипников, фланцев, а также нагрузки на подшипники агрегата, величины углового развала фланцев с расчетными данными по установке линии валов, приведенными в технической документации завода-изготовителя;
- проверить исправность приспособления для определения нагрузок на подшипники (рисунок 15) и возможность использования для этой цели подъемно-транспортных механизмов, имеющихся на монтажной площадке (масса вала с ротором или якорем не должна превышать грузоподъемность крана);
- определить необходимое сечение стропов и выбрать их в зависимости от максимальной нагрузки на проверяемый подшипник при взвешивании части вала с ротором (якорем).

Операции по выверке линии валов агрегата на основании расчетных данных выполняют в такой технологической последовательности:
- замеряют и регулируют уклоны шеек вала средней машины агрегата, имеющей два собственных подшипника, таким образом, чтобы шейки вала находились на одной высоте по отношению к горизонтальной плоскости, а также выверяют и закрепляют подшипниковые стойки этой машины;
- прицентровывают к выверенному валу средней машины вал машины, имеющей одну подшипниковую стойку, для чего: проверяют соответствие размеров центрирующего выступа и заточки сочленяемых фланцев; вводят центрирующий выступ фланца присоединяемого вала в выточку фланца (или полумуфты) выверенного вала средней машины; замеряют и регулируют зазор между торцами фланцев, устанавливают и затягивают временные стяжные болты;
- прицентровывают к выверенному валу средней машины вал второй машины и поочередно с каждой стороны валы остальных машин агрегата (в последовательности изложенной выше);

Рисунок 15. Схема установки приспособления для определения нагрузок на подшипники многомашинных агрегатов методом взвешивания.
1 – индикатор; 2 – рукоятка ручного привода гидравлического домкрата; 3 – серьги динамометра; 4 – динамометр; 5 – строп из стального каната (к мостовому крану); 6 – приспособление для плавного подъема вала агрегата; 7 – гидравлический ручной домкрат; 8 – универсальный строп из стального каната; 9 – стойка подшипника; 10 – вал ротора (якоря)

Проверяют жесткость соединения фланцев черновыми болтами, а также надежность закрепления подшипниковых стоек;
- подвешивают динамометр с приспособлением для плавного подъема вала к крюку мостового крана (смотрите рисунок 15);
- снимают крышки и верхние вкладыши подшипников, после чего закрепляют индикатор на стойке проверяемого подшипника;
- подвешивают взвешиваемую часть вала 10 к динамометру, укрепленному на приспособлении для плавного подъема вала;
- осторожно поднимают крюк крана с подвешенным валом до тех пор, пока не натянутся стропы и начнет двигаться стрелка динамометра;
- продолжают подъем вала при помощи гидравлического ручного домкрата, установленного между скобами приспособления для плавного подъема вала до тех пор пока стрелка индикатора не отклонится на 1 - 3 деления, что свидетельствует об отрыве вала от вкладыша подшипника; при этом производят первую запись показаний динамометра и индикатора в момент отрыва вала от вкладыша подшипника;
- осторожно опускают вал гидравлическим домкратом до отклонения индикатора на 1 - 3 деления и производят повторную запись показаний динамометра и индикатора;
- сравнивают данные величин фактических нагрузок на подшипник с расчетной величиной нагрузки; аналогично определяют фактические нагрузки на все остальные подшипники;
- при необходимости производят перераспределение нагрузок на подшипники путем изменения высоты стоек подшипников;
- составляют протокол по результатам взвешивания;
- отворачивают гайки временных болтов и повторно замеряют зазоры между фланцами;
- сравнивают результаты замеров между фланцами и первоначальными, соответствующими расчетным;
- снимают приспособления для плавного подъема и взвешивания вала и освобождают мостовой кран;
- устанавливают верхние вкладыши и крышки подшипников;
- заменяют поочередно по одному временные болты на фланцах на постоянные.

Допуск на центровку

Проверенные после центровки скобами длиной 250 - 300 мм величины боковых и угловых зазоров при совместном повороте обоих роторов на 0, 90, 180 и 270° (или на 0, 120 и 240°) не должны отличаться более чем на 0,03 мм. При другой длине скоб допуски на угловые зазоры должны быть изменены пропорционально длине скоб (соответственно в большую или меньшую сторону).

При центровке по полумуфтам для одних и тех же положений вала боковые и угловые зазоры для муфт диаметром 400 - 500 мм не должны отличаться более чем на 0,05 мм.

Величина допустимого биения конца вала обычно указывается заводом-изготовителем и, как уже упоминалось, зависит от быстроходности машин.

Окончательная установка линии валов

При монтаже средних и крупных электрических машин, вертикальное и горизонтальное перемещение ротора в небольших пределах (во избежание нарушения необходимого прилегания шеек вала в обоих нижних подшипниках) производят соответствующим перемещением стоек подшипников. Следует учесть, что при установленном статоре такое перемещение стоек вместе с ротором требует соответствующего перемещения и самих статоров, так как в противном случае нарушатся зазоры между статором и ротором.

Правильное положение ротора достигается перемещением фундаментной плиты. После нескольких перемещений фундаментной плиты и стоек подшипников под ними может оказаться большое количество временных прокладок, которые следует заменить постоянными, изготовляемыми строго по размерам временных прокладок.

Прокладки заменяют поочередно в каждом месте, так как одновременное выколачивание прокладок может привести к деформации фундаментной плиты. Перед сменой временных прокладок на плите наносят пометки по месту их установки. Постоянные прокладки пригоняют по этим пометкам и устанавливают путем выколачивания легкими ударами ручника. Их следует устанавливать достаточно плотно, но без ослабления других прокладок, что проверяют щупом и постукиванием ручником как по устанавливаемой, так и по соседним прокладкам.

Затем проверяют затяжку анкерных болтов, болтов крепящих стойки, и центровку, после чего приваривают коротким швом гайки анкерных болтов к плите, закрепляют болтами жесткие полумуфты, а также окончательно проверяют центровку и зазоры между статором и ротором.

Необходимо также убедиться в том, что при вращении ротор не задевает щитов статора. Для этого у средних и крупных электрических машин производят пробную установку щитов статора. При наличии заеданий несколько уменьшают разбег ротора путем передвигания подшипников в осевом направлении. После этого ударами свинцовой кувалды или молотка устанавливают контрольные конические штифты в стойки подшипников и лапы статора (по два штифта на каждую стойку и на статор). Сначала (до проверки отверстий сопрягаемых частей) устанавливают неизолированные штифты во избежание порчи изоляции, а затем изолированные. После этого заполняют паспорт машины, в котором указывают все данные центровки, зазоры между статором и ротором, зазоры в подшипниках, уклоны шеек вала и прочее.

Сборка, пригонка и соединение муфт

Эти операции выполняют после окончательной центровки валов.

Перед соединением машин с жесткими или полужесткими муфтами необходимо убедиться в отсутствии на торцевых поверхностях полумуфт выбоин, царапин, заусенцев и других неровностей, после чего произвести развертку просверленных начерно отверстий для соединительных болтов. Каждое отверстие развертывают одновременно в обеих полумуфтах (полумуфты предварительно должны быть стянуты временными болтами).

Затем до и после установки всех соединительных болтов следует определить радиальные биения каждой полумуфты в четырех точках, отстоящих одна от другой на 90°. Если в результате неточной развертки биение превысит допуск на центровку, нужно все отверстия заново развернуть развертками большего диаметра и заменить соединительные болты.

Подвижные соединения, выполненные при помощи зубчатых муфт, после сборки проверяют на возможность углового (осевого) смещения валов вследствие их термического расширения, достаточность зазора между крышками и торцами зубьев ступиц, а также между торцами ступиц (смотрите рисунок 1, в , в статье "Муфты для соединения валов электрических машин "). Кроме того, в зубчатых муфтах проверяют зазоры в зацеплениях и правильность шага зацепления зубьев (допускаются отклонения по толщине зуба и в шаге ±0,05 мм).

При сборке пружинных муфт проверяют размеры пазов между зубьями полумуфт (они должны быть строго одинаковы) и возможность осевых перемещений пружин. Кроме того, необходимо убедиться в отсутствии защемлений пружин.

У пальцевых эластичных муфт проверяют диаметры резиновой или кожаной набивок, а также отверстий для них. При этом следует иметь ввиду, что эластичная часть пальцев должна свободно входить в отверстия (разница в диаметрах допускается 2 - 4 мм). Зазоры между торцами полумуфт допускаются в пределах 5 - 8 мм.

Обязательным условием при сборке и подгонке муфт является равномерное прилегание эластичной части всех пальцев к поверхности отверстий по всей их длине (в ведомой полумуфте). Правильное положение пальцев проверяют следующим образом: после установки каждого пальца устанавливают наличие смещения одной полумуфты по отношению к другой путем легкого покачивания одного из роторов в обе стороны. При этом необходимо добиться, чтобы величина смещения каждого из пальцев была одинаковой. Если при установке какого либо пальца смещение не обнаружено, причиной этого может быть неправильная установка или обработка пальца или неправильные размеры расточки отверстия в ведомой полумуфте.

Заливка фундаментных плит и анкерных болтов бетоном

После окончательной установки машины, приемки по акту, центровки машины (или агрегата) строительная организация под контролем монтажного персонала заливает бетонной смесью фундаментные плиты. Перед заливкой заливаемые части фундамента насекают; поверхность соприкосновения старого бетона с подливкой тщательно очищают, особенно от масла и керосина, промывают и в течение нескольких дней перед подливкой непрерывно увлажняют.

Пускать машину разрешается не ранее чем через 10 - 15 дней после подливки (при нормальной температуре твердения).

При заливке бетоном фундаментных плит и анкерных болтов в зимних условиях при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С бетонные работы следует выполнять в соответствии с указаниями "Строительных норм и правил" (СНиП).

Бетонную смесь, уложенную в зимних условиях, следует выдерживать преимущественно по способу термоса, основанному на применении утепленной опалубки и защитного покрытия в целях замедления остывания бетона. Для выполнения бетонных работ в зимних условиях весьма важным условием является ускорение процесса твердения. Наиболее пригодны для этой цели быстротвердеющие портландцементы высоких марок (500 и выше). Бетонная смесь не должна содержать частиц льда, снега и смерзшихся комьев цемента. Для ускорения твердения бетона в зимних условиях применяют химические добавки - хлористые соли (кальция, натрия или аммония). Общее количество вводимых в бетонную смесь хлористых солей не должно превышать 7% массы цемента (считая на безводные соли) или 15% количества воды затворения. Необходимое для каждого отдельного случая соотношение добавляемых к бетону солей определяют по соответствующим инструкциям.

Похожие публикации