Интернет-журнал дачника. Сад и огород своими руками

Индукционный нагреватель 12 в. Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока. Компоненты и катушка

Индукционный нагреватель можно устанавливать в квартире, для этого не нужно никаких согласований и связанных с ними расходов и хлопот. Достаточно желания хозяина. Проект подключения требуется только теоретически. Это и стало одной из причин популярности индукционных нагревателей, даже несмотря на приличную стоимость электроэнергии.

Индукционный способ нагрева

Индукционный нагрев - это нагрев переменным электромагнитным полем проводника, помещенного в это поле. В проводнике возникают вихревые токи (токи Фуко), которые и нагревают его. По сути дела - это трансформатор, первичная обмотка - это катушка, называемая индуктором, а вторичная обмотка - это вкладка или короткозамкнутая обмотка. Тепло не подводится к вкладке, а генерируется в ней самой блуждающими токами. Все, окружающее ее, остается холодным, что является определенным преимуществом устройств такого рода.

Тепло во вкладке распределяется неравномерно, а только в поверхностных ее слоях и далее по объему распространяется за счет теплопроводности материала вкладки. Причем с повышением частоты переменного магнитного поля глубина проникновения уменьшается, а интенсивность увеличивается.

Для работы индуктора с частотой большей, чем в сети (50Гц), применяются транзисторные или тиристорные преобразователи частоты. Тиристорные преобразователи позволяют получать частоты до 8 КГц, транзисторные - до 25КГц. Схемы их подключения можно найти легко.

Планируя установку систем отопления в собственном доме или на даче, кроме прочих вариантов на жидком или твердом топливе, необходимо рассмотреть вариант с применением индукционного нагрева котла. С таким отоплением экономить на электроэнергии не удастся , но отсутствуют опасные для здоровья вещества.

Основное назначение индуктора - выработка тепловой энергии за счет электрической без использования теплоэлектронагревателей принципиально другим способом.

Типовой индуктор состоит из следующих основных деталей и устройств:

Устройство нагревательного прибора

Основные элементы индукционного нагревателя для отопительной системы.

  1. Стальная проволока диаметром 5-7 мм.
  2. Труба из пластика с толстой стенкой. Внутренний диаметр не менее 50 мм и длина подбирается по месту установки.
  3. Медная эмалированная проволока для катушки. Размеры подбираются в зависимости от мощности устройства.
  4. Сетка из нержавеющей стали.
  5. Сварочный инвертор.

Порядок изготовления индукционного котла

Вариант первый

Стальную проволоку порубить на отрезки длиной не более 50 мм. Рубленой проволокой заполнить пластиковую трубу. Торцы заглушить проволочной сеткой для предотвращения высыпания проволоки.

На концах трубы установить переходники от пластиковой трубы к размеру трубы в месте подключения нагревателя.

Медным эмалированным проводом намотать обмотку на корпусе нагревателя (пластиковой трубе). Для этого понадобится порядка 17 метров провода: количество витков - 90, наружный диаметр трубы порядка 60 мм: 3,14 х 60 х90 = 17 (метров). Длину уточните дополнительно, когда будет точно известен наружный диаметр трубы.

Пластиковую трубку, а теперь уже индукционный котел , врезать в трубопровод в вертикальном положении.

При проверке работоспособности индукционного нагревателя убедитесь, что в котле присутствует теплоноситель. В противном случае корпус (пластиковая труба) расплавится очень быстро.

Подключить котел к инвертору, необходимо заполнить систему теплоносителем и можно включать.

Вариант второй

Конструкция индукционного нагревателя из сварочного инвертора по этому варианту более сложна, требует определенных навыков и умений работать своими руками, однако, она более эффективна. Принцип тот же - индукционный нагрев теплоносителя.

Для начала нужно изготовить сам индукционный нагреватель - котел. Для этого понадобятся две трубки разного диаметра, которые вставляются одна в другую с зазором между ними порядка 20 мм. Длина трубок от 150 до 500 мм, в зависимости от предполагаемой мощности индукционного нагревателя. Нужно вырезать два кольца соответственно зазору между трубками и приварить их герметично по торцам. Получилась емкость тороидальной формы.

Остается вварить в наружную стенку входную (нижнюю) трубку по касательной к корпусу и верхнюю (выходную) трубку параллельно входной на противоположной стороне тороида. Размер трубок - по размеру труб отопительной системы. Расположение входного и выходного патрубков по касательной, обеспечит циркуляцию теплоносителя по всему объему котла без образования застойных зон.

Второй шаг - создание обмотки. Эмалированный медный провод нужно наматывать вертикально, пропуская его внутрь и поднимая наверх по внешнему контуру корпуса. И так 30-40 витков, образуя тороидальную катушку. В таком варианте нагреваться будет одновременно вся поверхность котла, таким образом, значительно повышая его производительность и эффективность.

Изготовить наружный корпус обогревателя из непроводящих материалов, использовав, например, пластиковую трубу большого диаметра или банальное пластиковое ведро, если будет достаточно его высоты. Диаметр наружного корпуса должен обеспечивать выход патрубков котла сбоку. Обеспечить соблюдение правил электробезопасности по всей схеме подключения.

Корпус котла отделить от наружного корпуса теплоизолятором, можно использовать как сыпучий термоизоляционный материал (керамзит), так и плиточный (изовер, минплита и тому подобное). Этим предотвращаются потери тепла в атмосферу от конвекции.

Остается заполнить систему своим теплоносителем и подсоединить индукционный нагреватель из сварочного инвертора.

Такой котел совершенно не требует вмешательства и может работать 25 и более лет без ремонта, поскольку в конструкции отсутствуют движущиеся детали, а в схеме подключения предусмотрено использование автоматического управления.

Вариант третий

Это, наоборот, самый простой вариант обогрева жилища, выполняемый своими руками. На вертикальной части трубы системы отопления нужно выбрать прямой участок длиной не менее метра и очистить его от краски наждачной шкуркой. Затем этот участок трубы изолировать 2-3 слоями электротехнической ткани или плотной стеклоткани. После этого эмалированным медным проводом намотать индукционную катушку. Тщательно изолировать всю схему подключения.

Остается только подключить сварочный инвертор и наслаждаться теплом в своем жилище.

Обратите внимание на несколько моментов.

  1. Нежелательно устанавливать такой обогреватель в жилых комнатах, где чаще всего находятся люди. Дело в том, что электромагнитное поле распространяется не только внутри катушки, но и в окружающем пространстве. Чтобы убедиться в этом, достаточно воспользоваться обыкновенным магнитом. Нужно взять его в руку и подойти к катушке (котлу). Магнит начнет ощутимо вибрировать и тем сильнее, чем ближе катушка. Поэтому лучше использовать котел в нежилой части дома или квартиры.
  2. Устанавливая катушку на трубе, убедитесь, что на этом участке системы отопления теплоноситель естественным образом течет вверх, чтобы не создавать противотока, иначе система вообще не будет работать.

Можно предложить много вариантов применения индукционного нагрева в жилище. Например, в системе горячего водоснабжения можно вообще отказаться от подачи горячей воды , подогревая ее на выходах из каждого крана. Однако, это тема для отдельного рассмотрения.

Несколько слов о безопасности при использовании индукционных нагревателей со сварочным инвертором:

  • для обеспечения электробезопасности необходимо тщательно изолировать токопроводящие элементы конструкций по всей схеме подключения;
  • индукционный нагреватель рекомендуется только для закрытых систем отопления, в которых циркуляция обеспечивается водяным насосом;
  • рекомендуется размещать индукционную систему на расстоянии не менее 30 см от стен и мебели и в 80 сантиметрах от пола или потолка;
  • чтобы обезопасить работу системы нужно оснастить систему манометром, аварийным клапаном и устройством автоматического регулирования.
  • установить устройство для стравливания воздуха из системы отопления во избежание образования воздушных пробок.

КПД индукционных котлов и нагревателей близка к 100%, при этом нужно учитывать, что потери электроэнергии в сварочных инверторах и проводке, так или иначе, возвращаются к потребителю в виде тепла.

Прежде чем приступать к изготовлению индукционной системы, посмотрите технические данные промышленных образцов. Это поможет определиться с исходными данными самодельной системы.

Желаем успехов в творчестве и труде на самого себя!

Недавно возникла необходимость создать небольшой индукционный нагреватель своими руками. Бродя по просторам интернета, нашел несколько схем индукционных нагревателей. Многие схемы не устраивали из-за довольно сложной обвязки, некоторые не работали, но попадались и рабочие варианты.

Несколько дней назад пришел к выводу, что индукционный нагреватель можно сделать из электронного трансформатора с минимальными затратами.

Принцип индукционного нагрева заключается в воздействии на металл токами Фуко. Такой нагреватель активно применяется в самых разных сферах науки и техники. По идее токам Фуко безразличны виды и свойства металлов, поэтому индуктор может подогреть или расплавить абсолютно любой металл.

Электронный трансформатор — импульсный блок питания, на базе которого построен наш нагреватель. Это простой полумостовой инвертор, построенный на двух мощный биполярных транзисторах серии MJE13007, которые жутко перегреваются в ходе работы, поэтому им нужен очень хороший теплоотвод.

Для начала с электронного трансформатора нужно выпаять основной трансформатор. Своего рода индуктор мы изготовим на базе ферритовой чашки. Для этого берем чашку 2000НМ (размер чашки особо не важен, но желательно побольше). На каркасе мотаем 100 витков проводом 0,5 мм, с кончиков проводов снимаем лаковое покрытие и залужаем. Затем концы проводов запаиваем на место штатного импульсного трансформатора — все готово!




Получился довольно мощный самодельный индукционный нагреватель (КПД не более 65%), на основе которого, можно собрать даже небольшую индукционную печку. Если взять кусок металла и приблизить этот металл к центру катушки, то через несколько секунд металл нагреется. Таким нагревателем можно плавить провода с диаметром 1,5 мм — мне это удалось всего за 20 секунд, но при этом высоковольтные транзисторы ЭТ так нагрелись, что на них можно было яичницу жарить!


В ходе работы, возможно, будет нужда дополнительного охлаждения для теплоотводов, поскольку опыт показал, что теплоотвод попросту не успевает отводить тепло с транзисторов.

Основа работы такого инвертора довольно проста. Сама схема индукционного нагревателя удобна тем, что не требует никакой настройки (в более сложных схемах часто возникает необходимость подгонки схемы в частоту резонанса, точный расчет количества витков и диаметра провода контура, а также подсчет контурного конденсатора, а тут всего этого нет и схема работает сразу).

Напряжение сети (220 Вольт) сначала выпрямляется диодным выпрямителем, затем поступает на схему. Частоту задает динистор (диак) марки DB3. Сама схема не имеет никаких защит, только ограничивающий резистор на входе питания, который якобы должен работать в качестве сетевого предохранителя, но при малейшей проблеме в первую очередь вылетают транзисторы. Надежность схемы индукционного нагревателя можно поднять, заменив диоды в выпрямителе более мощными, добавив сетевой фильтр на вход схемы и заменив силовые транзисторы на более мощные, скажем на MJE13009.

Вообще не советую включать такой нагреватель на долгое время, если не имеется активного охлаждения, иначе каждые 5 минут будете вынуждены менять транзисторы.

Самодельный индукционный нагреватель 4 кВт.


Представьте такой фокус. Человек берёт в руки железный гвоздь и засовывает его в медную петлю - индуктор. Гвоздь тут же раскаляется добела.
Секрет фокуса - индукционный нагрев. Старинная технология, впервые разработанная русским электротехником Вологдиным в 1880 году, и, к сожалению, до сих пор мало распространённая среди домаших мастеров.

По медной петле - индуктору - пропускается электрический ток большой силы (сотни ампер) и большой частоты (десятки - сотни кГц). В результате в металлической заготовке, стоящей внутри индуктора или рядом с ним, наводятся токи Фуко, тоже большой силы и частоты. Высокочастотный ток в заготовке под действием скин-эффекта вытесняется в тонкие поверхностные слои, в результате чего его плотность резко возрастает. Слой заготовки, по которому протекают большие токи, начинает быстро разогреваться. Температура может достичь нескольких тысяч градусов, что позволяет плавить металл в домашних условиях, придумывать и создавать свои собственные необычные сплавы; сваривать и паять металлические детали; закаливать отвёртки, свёрла, ножи и так далее, применять установку в кузнечных и ремонтных мастерских.

Индукционный нагрев позволяет разогревать электропроводящие материалы (любой металл, графит, электропроводную керамику) бесконтактно. Прямо через воздух, через слой воды, через стеклянную, деревянную или пластиковую стенку, в вакуумной камере или в камере с защитным газом. При этом заготовка остаётся идеально чистой, так как не окисляется в газовой струе, не касается грязной поверхности печки и т п.

_________________________________________________________________________

За основу был взят инвертор Сергея Владимировича Кухтецкого, разработанны й в Институте химии. Схема инвертора, её подробное описание и рекомендации по сборке опубликованы по адресу: www.icct.ru В схеме применены современные электронные компоненты, что позволяет собрать мощный и надёжный инвертор в домашних условиях за небольшую цену порядка нескольких тысяч рублей (цены на промышленные аналоги достигают десятков и сотен тысяч руб).

На форуме induction.listbb.ru совместными усилиями с форумчанами Derba, Феникс, Jab, Фулюган, Ostap, -CE- проведена до работка схемы, установлена дополнительная плата фазовой автоподстройки частоты ФАПЧ для автоматического удержания резонанса, установлена скоростная защита от превышения тока (как при превышении питания, так и в результате пробоя силовых мосфетов из-за их перегрева или сбоя модуля управления). Добавлены некоторые детали, уменьшающие вероятность перегрева мосфетов и сбоя модуля управления (приводящие к появлению сквозных токов в силовом мосте).

Потребляемая мощность инвертора в зависимости от применяемых индукторов: 1...4 кВт.
Частота тока в индукторе: 300 кГц.
Сила тока в индукторе: ~400А.
Максимальный потребляемый от сети ток при двухвитковом индукторе - 20А, потребляемое напряжение - 220V.

Индукционной нагреватель снабжён защитой, отключающей схему при превышении напряжения питания, при коротком замыкании индуктора, при заливании индуктора водой.

Схемы и обсуждение доработок смотрите на форуме: induction.listbb.ru и

Видео - плавление низкоуглеродистой стали (гайки) на воздухе:

Видео - плавление высокоуглеродистой стали (шарик от подшипника из стали ШХ-15):



Видео - плавление низкоуглеродистой стали в защитном газе (аргоне):



Видео - нагрев стального шарика через слой воды. Возможность нагрева железяк через слой воды интересна, вода электромагнитному полю не помеха

Мощное высокочастотное электромагнитное поле выталкивает железные заготовки из индуктора. С одной стороны это создаёт проблемы - сложно греть мелкие заготовки, их выносит из индуктора прочь и приходится их как-то закреплять (так называемый эффект электромагнитного дутья).
С другой стороны, можно плавить металл в подвешенном состоянии - (левитационная плавка, плавка в электромагнитном тигле):

Доработка инвертора для индукционного нагрева.

Метод бесконтактного нагрева жидкометаллических образцов токами высокой частоты в вакууме или защитном газе является оптимальным для экспериментов с мелкими образцами электропроводящих материалов.

Промышленные инверторы высокой частоты не обладают нужными для проведения эксперимента характеристиками (высокой мощностью при высокой частоте, необходимой для нагрева мелких образцов), в связи с чем был изготовлен самодельный инвертор. За основу был принят инвертор, разработанный Сергеем Кухтецким в Институте химии и химической технологии РАН, работающий следующим образом.
Индуктор для нагрева образцов, представляющий собой катушку колебательного контура совместно с компенсирующий батареей конденсаторов, накачивается от независимо работающего генератора высокой частоты.

Генератор выполнен по схеме полный мост, его частота автоматически подстраивается под собственную частоту колебательного контура вручную и не может изменяться во время работы. Предлагаемый инвертор не имеет схемы защиты силовых транзисторов от сквозных токов и схемы управления мощностью нагрева (Рис.1).

Рис.1. Блок-схема простого инвертора для индукционного нагрева.

Эксплуатация данного простого инвертора выявило следующие проблемы. В результате нагрева образца, а также в результате движения образца в индукторе происходит изменение индуктивности, входящей в состав колебательного контура, и изменению его собственной частоты. Поскольку частота работы инвертора задается генератором с неизменяемой во время работы частотой, рассогласование частот колебательного контура и генератора приводит к резкому падению мощности нагрева, вибрациям заготовки в индукторе, а также выходу силовых транзисторов на неоптимальный режим работы в емкостном режиме, что приводит к выходу их из строя.

Для решения указанных проблем инвертор был дооборудован схемой фазовой автоподстройки частоты ФАПЧ, схемой скоростной защиты силовых транзисторов от превышения тока и импульсным регулятором мощности с управлением от ПК. Схемы защиты и регулирования мощности выполнены в виде отдельных модулей и могут применяться для иных задач.

Схема ФАПЧ состоит из генератора с изменяемой частотой, датчика тока, датчика напряжения, регулируемой линии задержки, формирователя управляющих импульсов для силового моста. Датчики тока и напряжения измеряют соответствующие величины на колебательном контуре, после чего производится сравнение их фаз. Нулевой сдвиг фаз означает синхронную работу колебательного контура на собственной частоте и задающего генератора. В случае сдвига фаз задающий генератор автоматически корректирует частоту, подстраивая ее под собственную частоту колебательного контура (Рис.2). Электрическая схема доработанного инвертора приведена на Рис.5.

Настройка диапазона слежения ФАПЧ, порядок действий:

Необходимо определить собственную частоту колебательного контура, например, следующим образом.

1) Снять с шин колебательного контура согласующий трансформатор.

2) Подсоединить к шинам, соединяющим индуктор с батареей конденсаторов, осциллограф.

3) Настроить осциллограф в режим ожидания (в режим одиночного измерения Trigger).

4) Кратковременно коснуться шин колебательного контура батареей типа «крона». На экране появится "дребезг" – собственные колебания контура. При необходимости провести данную процедуру несколько раз о получения устойчивой картины на экране осциллографа.


Период собственных колебаний измеряется по сетке осциллографа, далее по формуле f = 1 / период , вычисляется собственная частота колебательного контура.

Настройка диапазона работы ФАПЧ проводится следующим образом.

1) К выходу микросхемы фапч-генератора CD4046 подсоединяется осциллограф.

2) Задать минимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 1 вольт подсоединить к выводу 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

3) Выставить минимальную частоту вращением потенциометра на ножке 12 микросхемы сd4046 на 30 кГц ниже собственной частоты колебательного контура (подбирается опытным путём для надёжного подхватывания ФАПЧ).

4) Задать максимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 4.5 вольта подсоединить к выводу 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

5) Вращением потенциометра на ножке 11 микросхемы CD4046 задать частоту на 30 кГц выше собственной.


В результате проделанных операций инвертор автоматически стартует с подхватыванием резонанса и удерживает его в процессе работы.

Рис.2. Блок-схема инвертора для индукционного нагрева с ФАПЧ.

Модуль защиты состоит из выполненного на шунте датчика тока, схемы фиксации превышения тока с настройкой порога срабатывания и схемы отключения питания. Питание подводится к инвертору через шунт. В момент превышения тока на шунте фиксируется превышение падения напряжения, что приводит к перебрасыванию триггера и подаче сигнала запирания на силовой транзистор (Рис.3). Электрическая схема модуля защиты приведена на Рис.6.

Рис.3. Блок-схема модуля скоростной защиты.

Видео - срабатывание модуля скоростной защиты:


Импульсный регулятор мощности выполнен по схеме понижающего ШИМ-преобразователя типа step-down. Регулирование мощности осуществляется посредством изменения скважности управляющего ШИМ-сигнала. Управляющий сигнал генерируется микроконтроллером STM32F767 (готовая отладочная плата со встроенным USB-программатором). Параметры регулирования мощности задаются с компьютера через интерфейс USB, входящий в состав любого ПК, данное решение позволяет синхронизировать сбор данных и управление экспериментальной установкой (блок-схема изображена на Рис.4).

Рис.4. Блок-схема импульсного регулятора мощности.

Программа микроконтроллера предусматривает как ручное (педаль, ручка энкодера), так и дистанционное управление регулятором мощности (с помощью ПК), осуществление плавного старта и стопа, стабилизации выходной мощности по току или по напряжению, индикации работы прибора. Электрическая схема импульсного регулятора мощности приведена на Рис.7.

Рис.5. Схема инвертора для индукционного нагрева образцов с фазовой автоподстройкой частоты.

Рис.6. Электрическая схема универсального скоростного прерывателя тока для защиты установки индукционного нагрева.

Рис.7. Электрическая схема универсального импульсного регулятора мощности.

Объяснить популярность индукционного нагревателя IR2153 можно тем, что человек все время находится в поисках – бесконечный поиск человеком источников тепла для обогрева своего жилья, которые будут: экономичными, экологичными и функциональными. Многие даже осмелились и не зря сделать индукционный нагреватель своими руками с целью присоединения его к отопительной системе жилища. В статье будет подробно рассказано, как это сделать индуктор обогреватель, чтобы затратить минимум денежных средств и времени.

Схема индукционного нагревателя

Из-за того, что М. Фарадей в далеком 1831 году открыл явление электромагнитной индукции, мир увидел большое количество приспособлений, которые греют воду и прочие среды.

Потому как было реализовано данное открытие люди ежедневно используют в быту :

  • Электрочайник с дисковым нагревателем для нагрева воды;
  • Печь мультиварка;
  • Индукционная варочная панель;
  • Микроволновки (плита);
  • Калорифер;
  • Нагревательная колонка.

Также открытие применяется для экструдера (не механический). Раньше оно широко применялось в металлургии и прочих отраслях промышленности, связанной с обработкой металла. Заводской индуктивный котел функционирует по принципу действия вихревых токов на специальный сердечник, расположенный во внутренне части катушки. Вихревые токи Фуко поверхностные, поэтому лучше брать в качестве сердечника полую трубу из металла, сквозь которую проходит элемент теплоносителя.

Возникновение электротоков происходит из-за подачи на обмотку переменного электронапряжения, вызывающего появление переменного электрического магнитного поля, которое меняет потенциалы 50 раз/сек. при стандартной пром частоте 50 Гц.

При этом индукционная катушка Румкорфа выполнена так, что её можно подключить к электросети переменного тока напрямую. На производстве для такого нагрева применяют высокочастотные электротоки – до 1 МГц, поэтому добиться функционирования устройства при 50 Гц довольно сложно. Толщина проволоки и число обматывающих витков, которую применяет устройство, водонагреватель , рассчитано в отдельности для каждого агрегата по специальному методу под требуемую мощность тепла. Самодельный, мощный агрегат должен функционировать эффективно, быстро греть идущую по трубе воду и при этом не нагреваться.

Организации вкладывают серьезные финансы в разработку и внедрение таких продуктов, поэтому :

  • Все задачи разрешаются удачно;
  • КПД нагревательный прибор имеет 98%;
  • Функционирует без перебоев.

Кроме высочайшей эффективности не может не привлекать скорость, с которой идет нагревание идущей через сердечник среды. На рис. предложена схема функционирования индукционного водонагревателя, созданного на заводе. Такую схему имеет агрегат марки «ВИН», которые производит Ижевский завод.

Насколько долго будет работать агрегат, зависит исключительно от того, насколько герметичен корпус и не повреждена изоляции витков провода, а это довольно значительный период, по заявлению изготовителя – до 30 лет.

За все эти плюсы, которыми 100% обладает аппарат, нужно выложить немалые финансы, индукторный, магнитный водонагреватель – самый дорогой из всех видов установок для отопления. Поэтому многие мастера предпочитают собрать сверхэкономичный агрегат для отопления самостоятельно.

Делаем индукционный нагреватель своими руками

Изготовление изобретения не сложное, если есть навыки, получится сделать хорошее устройство. Самый простой агрегат, который собирают вручную, состоит из отреза трубы (пластик), внутрь которой устраиваются разные элементы (металл) чтобы создать сердечник.


Это может быть :

  • Проволока из нержавейки;
  • Скатанная шариками, рубленная небольшими кусками проволока – катанка, диаметр которой 8 мм;
  • Сверло по диаметру трубы.

С наружной стороны к ней наклеиваются палочки из стеклотекстолита, а на них нужно намотать провод толщиной 1,7 мм в изоляции. Длина провода – примерно 11 м. Затем индукционный нагреватель надо испытать, наполнив его водой и подключив, например, к индукционной варочной панели марки ORION мощность которой 2 кВт вместо штатного индуктора. Сваренный из нескольких труб из металла вихревой радиатор выступает в роли внешнего сердечника для вихревых электротоков, которые создает катушка той же панели.

В результате можно сделать следующий вывод :

  1. Мощность тепла сделанного отопительного устройства выше электромощности панели.
  2. Число и размер трубок были выбраны случайно, но создали достаточную поверхность для подачи тепла, которое возникает от вихревых токов.
  3. Данная схема водонагревателя оказалась удачной для конкретного случая, когда квартирное помещение окружено другими квартирами, которые отапливаются.

Работает прибор правильно, поэтому если есть желания, опыт и знания можно воплотить эту идею в жизнь. Для сложных моделей может понадобиться применение 3-фазного трансформатора.

Высокоточный индукционный нагрев

Такое нагревание имеет самый простой принцип, так как является бесконтактным. Высокочастотный импульсный нагрев дает возможность достигать высочайшего температурного режима, при котором возможно обрабатывать самые сложные в плавке металлы. Чтобы выполнить индукционный нагрев, нужно создать в электромагнитных полях необходимое напряжение 12В (вольт) и частоту индуктивности.

Сделать это возможно в специальном устройстве – индукторе. Питается оно электричеством от промышленной электросети в 50 Гц.

Возможно, для этого применять индивидуальные источники электропитания – преобразователи/генераторы. Наиболее простое устройство прибора малой частоты – спираль (проводник заизолированный), который может размещаться во внутренней части трубы из металла или наматываться на неё. Идущие токи греют трубку, которая, в дальнейшем, дает тепло в жилое помещение.

Использование индукционного нагрева на минимальных частотах явление не частое. Наиболее распространено обрабатывание металлов на более высокой или средней частоте. Такие приспособления отличаются тем, что магнитная волна идет на поверхность, где затухает. Энергия преобразуется в тепло. Чтобы эффект был лучше обе составные части должны иметь схожую форму. Где применяется нагрев?

Сегодня применение высокочастотного нагрева широко распространено :

  • Для плавки металлов, и их пайка бесконтактным методом;
  • Машиностроительная промышленность;
  • Ювелирное дело;
  • Создание небольших элементов (плат), которые могут быть повреждены при использовании других методик;
  • Закалка поверхностей деталей, разной конфигурации;
  • Термическая обработка деталей;
  • Медицинская практика (дезинфекция приборов/инструментов).

С помощью нагрева можно решить множество задач.

Преимущества: индукционный нагрев металла

У нагрева множество преимуществ. При помощи него, возможно, быстро нагреть и расплавить до жидкого состояния любой токопроводимый материал. Дает возможность выполнять нагревание в любой среде, которая не проводит ток, то есть плавильно-рабочую функцию.


Потому как нагревается только проводник, стенки остаются холодными. Этот вид нагрева не загрязняет окружающую среду. Если горелки на газу загрязняют воздух, то индукционный нагрев это исключает, потому как работает электромагнитное излучение. Компактные размеры индуктора. Возможность создания устройства любой формы.

Нагрев незаменим, если нужно нагреть только выбранную область на поверхности. Также устройство настроить такое спецоборудование на требуемый режим и отрегулировать его.

Как сделать индукционный нагреватель из компьютерного блока питания

Нагреватель можно сделать из компьютерного блока питания.

Понадобится :

  • Дроссель от компьютерного блока;
  • Паяльник;
  • Сварочный аппарат;
  • Кусачки;
  • Проволока из нержавеющей стали 6 мм;
  • Эмалированный плоский медный провод 2 мм;
  • Трубы из стали 25 мм;
  • Труба из пластика 50 мм;
  • Прочная сантехническая фурнитура;
  • Взрывной клапан;
  • Детали для сборки схемы.

Состоит котел из катушки, теплообменника, клеммной коробки, шкафа управления, входного и выходного патрубков. Установка простая, главное действовать по схеме. Хороший лабораторный блок питания можно разработать за день и реализовать тоже за день. Подключаются устройства через трансформаторный пункт.

Простой индуктор своими руками

В домашнем быту часто может пригодиться индуктор ТВЧ.

Это устройство часто используют для нагревания прикипевших :

  • Гаек/болтов;
  • Рамок и балок авто;
  • Деталей для автосервиса, включая подшипники и разнообразные втулки.

Такие приборы можно купить в специализированном магазине, так же, как и любое другое оборудование, например, инверторный китайский кондиционер, сейсмодатчик, но стоят они очень дорого. Однако выход есть, вполне реально создать индукционный нагреватель дома. Для сборки потребуется трансформатор, его возможно сделать из 2-х колец. Марку феррита можно применить М 2000 НМ.

В первичной обмотке должно присутствовать примерно 26 витков провода диаметр, которого 0,75 мм. Первичная обмотка присоединяется там, где выходит инвертор. Вторую обмотку составляет одна петля из медной трубки диаметра 6 мм, она же является и отводом индуктора-трубки, которая проходит через центр кольцевой части трансформатора.

Сам индуктор представляет из себя катушку из нескольких витков трубки из меди – 4 мм.

Конденсатор вместе с устройством выполняет работу контура колебаний, создающего частоту резонанс (резонансный), на которую настроен инвертор. Если в центральной части медной спирали устроить заготовку, то она будет обеспечивать активное сопротивление. В самой катушке возникают ТВЧ, поэтому трубка с витками очень сильно нагревается, а значит, её необходимо в обязательном порядке охладить, для этого возможно использовать обычную воду из трубопроводов.

Для подвода к индуктору необходимо применить диэлектрические трубки, так как в контуре развивается высокое напряжение. За проточной водой, что охлаждает индуктор, нужен постоянный контроль, поэтому в слив устраивается специальная вставка, к которой крепятся термопара и тестер, чтобы контролировать температурный режим. В устройстве следует использовать мощнейший конденсатор, его можно собрать из сорока высоковольтных конденсаторов на 0,033 мкФ каждый.

Индукционный нагреватель своими руками (видео)

Как видите сделать индуктор своими руками несложно, главное следовать схеме, также можно создать индукционный горн или собрать схему на тиристорах или любую другую, к примеру, внутреннее содержимое транзистора.

Индукционный нагреватель — устройство для нагрева металлов, путем воздействия токами Фуко. Сам принцип такого нагревателя известен с давних времен, а сейчас индукционные нагреватели активно применяются во многих областях промышленности. Наш самодельный индуктор прост в использовании, имеет относительно простую конструкцию и не требует никакой настройки. При этом, нагреватель довольно мощный.

Работает схема индуктора по принципу последовательного резонанса. Повысить мощность устройства можно несколькими способами — подбором более мощных полевых ключей, использованием конденсатора большей емкости в контуре, повышением питающего напряжения.

Собирал я такой индуктор своими руками, чисто из любопытства, чтобы проверить работоспособность схемы.

Дроссель — взял готовый от компьютерного блока питания. Намотан на кольце от порошкового железа и содержит 10-25 витков провода 1,5мм.


Полевые транзисторы — тут выбор большой, в моем случае были использованы N-канальные высоковольтные полевые транзисторы серии IRF740, но желательно использовать полевые транзисторы ориентируясь по минимальному сопротивлению открытого перехода, а также максимально допустимого тока. В стандартном варианте советуется использовать силовые ключи серии IRFP250.

Параметры этого транзистора:

  • Структура N-канал
  • Максимальное напряжение сток-исток Uси: 200 В
  • Максимальный ток сток-исток при 25 ºС Iси макс.: 30 А
  • Максимальное напряжение затвор-исток Uзи макс.: ±20 В
  • Сопротивление канала в открытом состоянии Rси вкл.: 85 мОм
  • Максимальная рассеиваемая мощность Pси макс.: 190 Вт
  • Крутизна характеристики S: 12000 мА/В
  • Корпус: TO247AC
  • Пороговое напряжение на затворе: 4 В

Очень мощный и довольно дорогой транзистор, но с ним можно получить высокую мощность, при этом потребление может быть в районе 20-40 Ампер!!!


Контур был намотан на оправе с диаметром 4,5 см и состоит из 2х3 витков. Советую мотать сразу 6 витков, затем с 3 витка снять лак на небольшом участке и там же запаять провод, который будет отводом, на него подается силовой плюс. В моем случае для намотки контура был использован провод 1.5мм, но в идеале нужен провод 3-5мм, мотается по тому же принципу.

Стабилитроны 12-15 Вольт, желательно с мощностью 1-2 ватт, все использованные резисторы 0,5 ватт.


Диоды — обязательно нужны быстрые с обратным напряжением не менее 400 Вольт, можно ставить дешевые ультрафасты UF4007, в моем случае были использованы диоды серии HER305 — с обратным напряжением 400 Вольт, при допустимом токе 3 Ампер.


Увеличить мощность схемы, означает увеличить ток в контуре. Чем больше емкость конденсатора С1, тем больше ток. В моем случае были использованы пленки на 250 Вольт 6 шт 0,33мкФ, но число кол-во конденсаторов в стандартном варианте советуется 15-20 штук с той же емкостью, напряжение конденсаторов 250-400Вольт.

Основной недостаток схемы — немыслимое количество тепловыделения на транзисторах, с моими, довольно хорошими ключами пришлось охлаждать схему двумя кулерами, но даже они не успевали должным образом отводить тепло, поэтому буду думать о водяном охлаждении…

Самодельный индуктор довольно быстро способен разогреть болты стандарта М6, до желтого оттенка.

Похожие публикации