Интернет-журнал дачника. Сад и огород своими руками

Самодельные индикаторы вч поля. Детектор излучения Основные правила подготовки и проведения контрольно-поисковых работ

Часто возникает необходимость произвести простейшую проверку исправности передатчика RC, исправен ли он и его антенна, излучает ли передатчик в эфир электромагнитные волны. В этом случае большую помощь окажет простейший индикатор электромагнитного поля. С его помощью можно проверить работу выходного каскада любого передатчика используемого в моделизме в диапазоне от нескольких МГц и до 2,5 ГГц. Им можно так же проверить работу сотового телефона на передачу.

В основе приборчика применён детектор с удвоением напряжения на СВЧ диодах типа КД514 советского производства. Принцип работы понятен из принципиальной схемы. К точке соединения диодов подключается антенна длиной 20.....25 см из проволоки диам. 1.....2 мм. К диодам подключен фильтрующий конденсатор (трубчатый, керамический) емкостью примерно 2200 пкФ. Диоды с конденсатором подпаиваются к клеммам микроамперметра, который является прибором индикации наличия электромагнитного поля. Катод правого по схеме диода подпаивается к клемме "+" , а анод левого по схеме диода подпаивается к клемме "-". Антенна индикатора может располагаться на расстоянии от нескольких сантиметров (передатчик на 2,4 ГГц или сотовый телефон) до 1 метра,
если передатчик работает в диапазоне 27.........40 Мгц. Такие передатчики имеют телескопическую антенну.
Все детали расположены на кусочке текстолита. Фильтрующий конденсатор расположен снизу платки и его на фото не видно.

Принципиальная схема

Фотографии.



Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Подборка схем и конструкций самодельных детекторов жучков для поиска радиозакладок. Обычно, радио подслушивающие схемы радиозакладок работают на частоте в диапазоне 30…500 МГц и имеют очень низкую мощность передатчика около 5 мВт. Порой, жучек работает в в ждущем режиме и активизируются только при появлении шума в контролируемом помещении.
В этой статье рассмотрен детектор жучков схема для поиска подслушивающих устройств. Схема детектора жучков обычно представляет из себя мостовой детектор высокочастотного напряжения, работающий в огромном диапазоне частот.


Детектор жучков. Простая схема детектора напряженности

Это простая схема прекрасно ловит радио-жучков, но только в частотном диапазоне до 500 МГц, что является существенным минусом. Антенна детектора напряженности выполнена из штыря полуметровой длины диаметром не более 5 мм и изолированного снаружи. Далее сигнал детектируется германиевым диодом VD1, и усиливается транзисторами VT1, VT2). Усиленный УПТ сигнал проходит на пороговое устройство (DD1.1) и звуковой генератор выполненный на элементах DD1.2 - DD1.4, который нагружен на пьезоизлучатель. В качестве индуктивности L1 используется низкочастотный дроссель на ферритовом кольце 2000НМ, содержащий 200 витков провода ПЭЛ 0,1.

Еще одно простое самодельное устройство для поиска радиозакладок, приводится на схеме на рисунке чуть выше. Это широкополосный мостовой детектор высоко частотного напряжения, работающий в диапазоне от 1...200 МГц и дает возможность найти "жучки" на расстоянии от 0,5 до 1 м.

Для увеличения чувствительности используется проверенный способ измерения малых переменных напряжений с помощью сбалансированного диодно-резистивного моста.

Диоды VD5, VD6 предназначены для обеспечения термостабилизации работы схемы. Трехуровневые компараторы, выполненные на элементах D1.2...D1.4 и к их выходам подсоединены светодиоды, которые используются в качестве индикатора. В качестве стабилизатора напряжения на 1,4 вольта, используются диоды VD1, VD2. Работать с устройством не очень просто и требуются практические навыки, так как схема может реагировать на некоторую бытовую технику, телевизоры и компьютеры.

Для того, чтоб упростить процесс выявления радиозакладок можно применить сменные антенны разной длины, от которых будет меняться чувствительность схемы

При первом включение прибора, нужно резистором R2 добиться свечения светодиода HL3. Это будет уровень начальной чувствительности относительно фона. Затем если мы приблизим антенну к источнику радиосигнала должны загораться и другие светодиоды в зависимости от уровня амплитуды радиосигнала.

Резистором R9 настраивают пороговый уровень чувствительности компараторов. Питается схема от девяти вольтовой батарейки, до тех пор пока она не разрядится до 6 вольт

Резисторы R2 можно взять СПЗ-36 или другие многооборотные, R9 СПЗ-19а, остальные любые; конденсаторы С1...С4 К10-17;.

Светодиоды можно использовать также любые, но с малым током потребления. Конструкция схемы зависит только от вашего воображения

Во время работы любой радио жучек излучает радиоволны, которые фиксируются антенной детектора и попадают на базу первого транзистора через высокочастотный фильтр, который выполнен на конденсаторах C1, C2 и сопротивление R1.

Отфильтрованный сигнал усиливается биполярным транзистором VT1 и через емкость C5 идет на высокочастотный первый диод. Переменное сопротивление R11 регулирует долю сигнала на диоде поступающего на операционный усилитель DD1.3. Он обладает высоким коэффициент усиления, который задается C9, R13, R17.

Если сигнал от радиозакладок отсутствует на антенне, то уровень сигнала на первом выходе ОУ DD1.3 стремится к нулю. Когда возникнет радиоизлучение усиленный сигнал с этого выхода, попадет на генератор звуковой частоты управляемый напряжением, собранный на элементах DD1.2., DD1.4 микросхемы МС3403P и третьем транзисторе. С выхода генератора импульсы усиливаются вторым транзистором и поступают на динамик.

Детектор жучков на десяти светодиодах

Основой детектора электромагнитного поля слудит микросхема LM3914, которая имеет в своем внутреннем составе десять компараторов и соответственно, столько же выходов для подсоединения светодиодов. Один из выводов каждого компаратора соединен с входом через усилитель сигнала, другой вывод подключен к резистивному делителю в точке соответствующей заданному уровню индикации.

Начало и конец резистивного делителя подключены к выводам 4 и 6. Четвертый подключен к отрицательному полюсу источника, для того чтобы обеспечивать индикацию напряжения с нуля. Шестой подсоединен к выходу опорного напряжения 1,25 вольт. Такое подключение говорит о том, что первый светодиод будет гореть при уровне напряжения 1,25 вольт. Таким образом, шаг между светодиодами будет равен 0,125.

Схема работает в режиме «Точка», то есть определенному уровню напряжения соответствует свечение одногосветодиода. Если же этот контакт подключить к плюсу источника питания, то индикация будет осуществлятся в режиме «Столбик», будет светиться светодиод заданного уровня и все ниже. Изменяя значение R1 можно регулировать чувствительность детектора. В качестве антенны можно взять кусок медной проволоки.

Широкополосные усилители являются неотъемлемой частью многихрадиотехнических систем и устройств. В ряде случаев помимо прочих к ним предъявляются требования согласования со стандартным 50- либо 75-омным трактом. Одним из наиболее удачных схемных решений построения таких

усилителей является использование перекрестных обратных связей (Л1, Л2, Л3), обеспечивающих согласование по входу и выходу, неизменное значение верхней граничной частоты при увеличении числа каскадов усилителей и высокую повторяемость их характеристик. Кроме того, усилители с перекрестными обратными связями практически не требуют настройки.

Технические характеристики усилителя:

  1. Полоса рабочих частот.. 0,5-70 МГц.
  2. Выходное напряжение, не менее... 1 V.
  3. Коэффициент усиления.....20±1 Дб.
  4. Входное/выходное сопротивление.. 50 Ом.
  5. Потребляемый ток........ 120мА.
  6. Напряжение питания..........12В.
  7. КСВН по входу, не более.........1,5.
  8. КСВН по выходу, не более.........3.
  9. Габаритные размеры..... 70x45 мм.

Принципиальная схема

На рис. 1 приведена принципиальная схема усилителя с перекрестными обратными связями, в котором выходной каскад реализован по схеме Дарлингтона, то есть, использовано последовательно-параллельное включение транзисторов, что позволяет увеличить уровень выходного напряжения (Л.4). На рис.

2 приведен чертеж печатной платы.

Усилитель содержит два предварительных каскада на транзисторах МЕ1 и МЕ2 и выходной каскад на транзисторах МЕЗ и МЕ4, включенных по схеме Дарлингтона.

Все каскады усилителя работают в режиме класса А с токами потребления 27 мА, которые устанавливаются подбором номиналов резисторов R1, R5, R9, R13. Резисторы R3, R7, R10, R14 являются резисторами местной обратной связи. Резисторы R4, R8, R12 - резисторы общей обратной связи.

Рис. 1. Принципиальная схема широкополосного усилителя ВЧ.

Печатная плата (рис. 2) размером 70x45 мм изготавливается из фольгированного с двух сторон стеклотекстолита толщиной 2...3 мм. Пунктирными линиями на рис.

2 обозначены места металлизации торцов, что может быть сделано с помощью металлической фольги, которая припаивается к нижней и верхней части платы.

Рис.2. Печатная плата усилителя ВЧ.

Настройка усилителя состоит из следующих этапов. Вначале с помощью резисторов R1, R5, R9, R13 устанавливаются токи покоя транзисторов усилителя. Затем, варьируя в небольших пределах номиналом резистора R4, минимизируется коэффициент стоячей волны напряжения по входу усилителя.

Коэффициент стоячей волны напряжения по выходу усилителя минимизируется с помощью резистора R12. Изменением номинала резистора R8 регулируется полоса пропускания и коэффициент усиления усилителя.

При необходимости верхняя граничная частота усилителя может быть увеличена. Для этого следует заменить транзисторы КТ315Г на более высокочастотные. В этом случае для схемы, приведенной на рис.

1, верхняя граничная частота будет составлять величину порядка 0,25...0,3 Fт, где Fт - граничная частота коэффициента передачи тока базы транзистора (Л.5). Использование рассматриваемого схемного решения позволяет осуществлять создание усилителей с верхней граничной частотой до 2 ГГц (Л.2). При их построении следует учитывать, что цепи общей обратной связи, состоящие из элементов С4, R4; С6, R8; С7, R12, должны быть по возможности короче.

Это объясняется необходимостью устранения излишней фазовой задержки сигнала в этих цепях. В противном случае амплитудно-частотная характеристика усилителя в области верхних частот оказывается с подъёмом. При значительном удлинении указанных цепей возможно самовозбуждение усилителя.

Титов А. Рк2005, 1.

Литература:

  1. Титов А. А. Упрощенный расчет широкополосного усилителя. Радиотехника, 1979, №6, с. 88-90.
  2. Авдоченко Б.И., Дьячко А.Н. и др. Сверхширокополосные усилители на биполярных транзисторах. Техника средств связи. Сер. Радиоизмерительная техника, 1985, Выл. 3, с. 57-60.
  3. Абрамов Ф.Г., Волков Ю.А. и др. Согласованный широкополосной усилитель. Приборы и техника эксперимента. 1984. №2, с. 111-112.
  4. Титов А.А., Ильющенко В.Н.Широкополосной усилитель. Патент по полезную модель №35491 Рос. агентства по патентам и товарным знакам. Опубл. 10.01.2004 Бюл. 1.
  5. Петухов В.М.Транзисторы и их зарубежные аналоги: Справочник в 4 томах.

Излучения. Детектор ВЧ излучения помогает определить на работоспособность жучок собранный своими руками. Детектор высокочастотного излучения служит как насадка для мультиметра, как цифрового так и стрелочного, разницы нету, основное что нужно - это микроамперметр .

В основном новички пользуются по началу тестером DT-830 в связи с его дешевой стоимостью.

Но практически у каждого в доме есть стрелочные приборы: вольтметры, амперметры, микроамперметры и т.д доставшие от отцов и дедов, или с какой-нибуть старой техники.

Схема ВЧ индикатора

Вобщем изготовить данную схему сможет каждый, умеющий правильно держать в руках паяльник.

Один из неприятных факторов который возникает у новичков, это достать ВЧ (Высокочастотный) диод, данные диоды бывают в таких корпусах:

Такие диоды очень распространены и встречаются практически на каждой третьей плате с деталями.

Теории хватит, приступим к практике. Для изготовления высокочастотного детектора нам понадобятся:

Резистор 1-3 килоом;
- Конденсатор 0,01-0,05 микрофарад;
- Конденсатор 50-100 пикофарад;
- ВЧ диод..
- Мультиметр (или стрелочный микроамперметр).

Детали всего 4 штуки. Паяем это все таким образом:

Все, наш детектор высокочастотных излучений готов! И можно использовать его для определения наличия жучков в офисе, или других источников радиоизлучений. С ув. Boil.


Среди множества схем зарядных устройств для автомобильных аккумуляторов, публикуемых в сети, особое внимание заслуживают автоматические зарядные устройства. Такие устройства создают целый ряд удобств при обслуживании аккумуляторных батарей. Из публикаций, посвященных автоматическим зарядным устройствам, следует отметить работы. Эти устройства не только обеспечивают зарядку аккумуляторных батарей, но и осуществляют их тренировку и восстановление.

Похожие публикации