Интернет-журнал дачника. Сад и огород своими руками

Способы очищения воздуха от бактерий. Микроорганизмы воздуха

Микрофлора воздуха

Микрофлора воздуха зависит от микрофлоры воды и почвы, над которыми расположены слои воздуха. В почве и воде микробы могут размножаться, в воздухе они не размножаются, а только некоторое время сохраняются. Поднятые в воздух с пылью, они либо оседают с каплями обратно на поверхность земли, либо погибают в воздухе от недостатка питания и от действия ультрафиолетовых лучей. Однако некоторые из них более устойчивые, например, туберкулезная палочка, споры клостридий, грибов и др., могут длительно сохраняться в воздухе.

Наибольшее количество микробов содержится в воздухе промышленных городов. Наиболее чист воздух над лесами, горами, снежными просторами. Верхние слои воздуха содержат меньше микробов. Над Москвой на высоте 500 м в одном метре воздуха содержатся 2-3 бактерии, на высоте 1000 м - в 2 раза меньше. Весьма богат микробами воздух в закрытых помещениях, особенно в лечебно-профилактических, детских дошкольных учреждениях, школах и т.д. Вместе с безвредными сапрофитами в воздухе зачастую находятся и болезнетворные микробы.

При кашле, чихании в воздух выбрасываются мельчайшие капельки-аэрозоли, содержащие возбудителей заболеваний, таких как грипп, корь, коклюш, туберкулез и ряд других, передающихся воздушно-капельным путем от больного человека - здоровому, вызывая заболевание.

Санитарно-бактериологическое исследование воздуха

Скопление и циркуляция возбудителей заболеваний в воздухе лечебно-профилактических учреждений является одной из причин возникновения госпитальных гнойно-септических инфекций, которые наносят колоссальный экономический ущерб, увеличивая стоимость лечения в 2 раза.

Вследствие этого в последнее время уделяют большое внимание санитарно-бактериологическому исследованию воздуха в больницах, операционных, родильных домах, детских учреждениях и др. Исследования проводят как в плановом порядке, так и по эпидемиологическим показаниям. Бактериологическое исследование воздушной среды предусматривает:

Определение общего содержания микробов в 1 м3 воздуха;

Определение содержания золотистого стафилококка в 1 м3 воздуха.

Отбор проб воздуха для бактериального исследования проводят в следующих помещениях:

* операционных блоках;

* перевязочных;

« послеоперационных палатах; « родильных залах;

* палатах для новорожденных;

* палатах для недоношенных детей;

* послеродовых палатах;

* отделениях и палатах интенсивной терапии и других помещениях, требующих асептических условий.

Методы отбора проб воздуха

Существуют два основных способа отбора проб воздуха для исследования:

1. седиментационный - основан на механическом оседании микроорганизмов;

2. аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

Пробы воздуха отбирают аспирационным методом с помощью аппарата Кротова, который состоит из трех основных частей: основания, корпуса и крышки. В крышке укреплен диск из прозрачного органического стекла с клиновидной щелью для засасывания воздуха. Для определения количества воздуха, прошедшего через прибор, на наружной стенке корпуса помещен ротаметр. В верхней части корпуса расположен вращающийся диск, на который устанавливается чашка Петри. Засасывание воздуха в прибор осуществляется центробежным вентилятором, насаженным на ось электродвигателя. Поступающая в прибор струя воздуха ударяется о поверхность находящейся в чашке питательной среды, оставляя на ней микроорганизмы, и, обтекая электродвигатель, выходит через ротаметр наружу.

Скорость протягивания воздуха составляет 25 л в минуту. Количество пропущенного воздуха должно составлять 100 литров для определения общего содержания бактерий и 250 литров для определения наличия золотистого стафилококка.

При отборе проб в разных помещениях необходимо обрабатывать поверхность аппарата, столик, внутренние стенки дезинфицирующим раствором 70° спиртом.

Определение микробного числа, патогенных микроорганизмов

Для определения общего содержания бактерий в 1 м3 воздуха забор проб проводят на 2% питательный агар. Посевы инкубируют при температуре 37° С в течение 24 часов, затем оставляют на 24 часа при комнатной температуре, подсчитывают количество выросших колоний и производят перерасчет на 1 м3 воздуха. Если на чашках питательного агара выросли колонии плесневых грибов, их подсчитывают и делают перерасчет на 1 м3 воздуха. В протоколе количество плесневых грибов указывают отдельно.

Расчет. Например, за 10 минут пропущено 125 литров воздуха, на поверхности выросло 100 колоний.

100x1000 л Число микробов в 1 м3 воздуха = - T -- = 800 л, т.е.

количество выросших колоний -1000 л количество пропущенного воздуха

Для определения наличия золотистого стафилококка забор проб проводят на желточно-солевой агар (ЖСА). Чашки помещают в термостат при температуре 37° С на 24 часа и выдерживают еще 24 часа при комнатной температуре, можно на 48 часов при температуре 37°С. Колонии, подозрительные на стафилококк, подлежат обязательной микроскопии и дальнейшей идентификации.

С желточно-солевого агара снимают в первую очередь колонии стафилококков, которые образуют радужный венчик вокруг колонии (положительная лецитовителлазная реакция). Дальнейшему изучению подвергают также пигментированные колонии и с отрицательной лецитовителлазной реакцией не менее двух колоний различного вида. Подозрительные колонии пересевают на чашки с кровяным или молочным агаром. Дальнейшее изучение их проводят по схеме.

Бактериологическое исследование на стафилококк

Посев на элективные среды (желточно-солевой, мол очно-солевой или молочно-желточно-солевой агар). Засеянные среды выдерживают в термостате при 37° С в течение 2 суток, либо одни сутки в термостате и дополнительно 24 часа на свету при комнатной температуре.

2-3-й день.

Просмотр чашек, фиксация в журнале характера и массивности роста. На вышеуказанных средах стафилококк растет в виде круглых блестящих, мастянистых, выпуклых пигментированных колоний. На средах, содержащих желток, золотистый стафилококк, выделенный от человека, в 60- 70% случаев образует радужный венчик вокруг колонии (положительная лецитовителлазная реакция).

Отвивка на скошенный агар для дальнейшего исследования не менее 2 колоний, подозрительных на стафилококк. Для исследования отвивают прежде всего колонии, дающие положительную лецитовителлазную реакцию.

Пробирки с посевом помещают в термостат при 37°С на 18-20 часов.

После суточной инкубации у выделенных штаммов проверяют морфологию, тинкториальные свойства (окраска по Граму) и наличие плазмокоагулирующей активности и хло-пьеобразующего фактора.

Под микроскопом окрашенные по Граму стафилококки имеют вид фиолетово-синих кокков, располагающихся гроздьями или небольшими кучками («кружево»).

Плазмокоагулирующую активность проверяют в реакции коагуляции плазмы (РКП). С учетом результатов РКП и лецитовителлазной активности в 70-75% случаев, на четвертый день исследования может быть подтверждена принадлежность вьщеленного штамма к виду золотистого стафилококка и выдан соответствующий ответ.

Если культура обладает только плазмокоагулирующей или только лецитовителлазной активностью, то для окончательного ответа требуется определение других признаков па-тогенности - ферментация маннита в аэробных условиях или ДНКазной активности.

Определение антибиотикограммы проводят только после выделения чистой культуры. Выделенные культуры золотистого стафилококка подлежат фаготипированию.

Учет результатов фаготипирования, определения чувствительности к антибиотикам, ДНКазной активности. Окончательная выдача ответа.

Исследование воздуха седиментационным методом допускается в исключительных случаях.

Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 минут, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 часов. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 часа при температуре 37 °С. На следующий день изучают выросшие колонии.

Критерии оценки микробной обсемененности воздуха в хирургических и акушерских стационарах

Микрофлора воздуха зависит от микрофлоры воды и почвы, над которыми расположены слои воздуха. В почве и воде микробы могут размножаться, в воздухе они не размножаются, а только некоторое время сохраняются. Поднятые в воздух с пылью, они либо оседают с каплями обратно на поверхность земли, либо погибают в воздухе от недостатка питания и от действия ультрафиолетовых лучей. Однако некоторые из них более устойчивые, например, туберкулезная палочка, споры клостридий, грибов и др., могут длительно сохраняться в воздухе.

Наибольшее количество микробов содержится в воздухе промышленных городов. Наиболее чист воздух над лесами, горами, снежными просторами. Верхние слои воздуха содержат меньше микробов. Над Москвой на высоте 500 м в одном метре воздуха содержатся 2-3 бактерии, на высоте 1000 м - в 2 раза меньше. Весьма богат микробами воздух в закрытых помещениях, особенно в лечебно-профилактических, детских дошкольных учреждениях, школах и т.д. Вместе с безвредными сапрофитами в воздухе зачастую находятся и болезнетворные микробы.

При кашле, чихании в воздух выбрасываются мельчайшие капельки-аэрозоли, содержащие возбудителей заболеваний, таких как грипп, корь, коклюш, туберкулез и ряд других, передающихся воздушно-капельным путем от больного человека - здоровому, вызывая заболевание.

Санитарно-бактериологическое исследование воздуха

Скопление и циркуляция возбудителей заболеваний в воздухе лечебно-профилактических учреждений является одной из причин возникновения госпитальных гнойно-септических инфекций, которые наносят колоссальный экономический ущерб, увеличивая стоимость лечения в 2 раза.

Вследствие этого в последнее время уделяют большое внимание санитарно-бактериологическому исследованию воздуха в больницах, операционных, родильных домах, детских учреждениях и др. Исследования проводят как в плановом порядке, так и по эпидемиологическим показаниям. Бактериологическое исследование воздушной среды предусматривает:

Определение общего содержания микробов в 1 м3 воздуха;

Определение содержания золотистого стафилококка в 1 м3 воздуха.

Отбор проб воздуха для бактериального исследования проводят в следующих помещениях:

* операционных блоках;

* перевязочных;

« послеоперационных палатах; « родильных залах;

* палатах для новорожденных;

* палатах для недоношенных детей;

* послеродовых палатах;

* отделениях и палатах интенсивной терапии и других помещениях, требующих асептических условий.

Методы отбора проб воздуха

Существуют два основных способа отбора проб воздуха для исследования:

1. седиментационный - основан на механическом оседании микроорганизмов;

2. аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

Пробы воздуха отбирают аспирационным методом с помощью аппарата Кротова, который состоит из трех основных частей: основания, корпуса и крышки. В крышке укреплен диск из прозрачного органического стекла с клиновидной щелью для засасывания воздуха. Для определения количества воздуха, прошедшего через прибор, на наружной стенке корпуса помещен ротаметр. В верхней части корпуса расположен вращающийся диск, на который устанавливается чашка Петри. Засасывание воздуха в прибор осуществляется центробежным вентилятором, насаженным на ось электродвигателя. Поступающая в прибор струя воздуха ударяется о поверхность находящейся в чашке питательной среды, оставляя на ней микроорганизмы, и, обтекая электродвигатель, выходит через ротаметр наружу.

Скорость протягивания воздуха составляет 25 л в минуту. Количество пропущенного воздуха должно составлять 100 литров для определения общего содержания бактерий и 250 литров для определения наличия золотистого стафилококка.

При отборе проб в разных помещениях необходимо обрабатывать поверхность аппарата, столик, внутренние стенки дезинфицирующим раствором 70° спиртом.

Определение микробного числа, патогенных микроорганизмов

Для определения общего содержания бактерий в 1 м3 воздуха забор проб проводят на 2% питательный агар. Посевы инкубируют при температуре 37° С в течение 24 часов, затем оставляют на 24 часа при комнатной температуре, подсчитывают количество выросших колоний и производят перерасчет на 1 м3 воздуха. Если на чашках питательного агара выросли колонии плесневых грибов, их подсчитывают и делают перерасчет на 1 м3 воздуха. В протоколе количество плесневых грибов указывают отдельно.

Расчет. Например, за 10 минут пропущено 125 литров воздуха, на поверхности выросло 100 колоний.

100x1000 л Число микробов в 1 м3 воздуха = - T -- = 800 л, т.е.

Количество выросших колоний -1000 л количество пропущенного воздуха

Для определения наличия золотистого стафилококка забор проб проводят на желточно-солевой агар (ЖСА). Чашки помещают в термостат при температуре 37° С на 24 часа и выдерживают еще 24 часа при комнатной температуре, можно на 48 часов при температуре 37°С. Колонии, подозрительные на стафилококк, подлежат обязательной микроскопии и дальнейшей идентификации.

С желточно-солевого агара снимают в первую очередь колонии стафилококков, которые образуют радужный венчик вокруг колонии (положительная лецитовителлазная реакция). Дальнейшему изучению подвергают также пигментированные колонии и с отрицательной лецитовителлазной реакцией не менее двух колоний различного вида. Подозрительные колонии пересевают на чашки с кровяным или молочным агаром. Дальнейшее изучение их проводят по схеме.

Бактериологическое исследование на стафилококк

Посев на элективные среды (желточно-солевой, мол очно-солевой или молочно-желточно-солевой агар). Засеянные среды выдерживают в термостате при 37° С в течение 2 суток, либо одни сутки в термостате и дополнительно 24 часа на свету при комнатной температуре.

2-3-й день.

Просмотр чашек, фиксация в журнале характера и массивности роста. На вышеуказанных средах стафилококк растет в виде круглых блестящих, мастянистых, выпуклых пигментированных колоний. На средах, содержащих желток, золотистый стафилококк, выделенный от человека, в 60- 70% случаев образует радужный венчик вокруг колонии (положительная лецитовителлазная реакция).

Отвивка на скошенный агар для дальнейшего исследования не менее 2 колоний, подозрительных на стафилококк. Для исследования отвивают прежде всего колонии, дающие положительную лецитовителлазную реакцию.

Пробирки с посевом помещают в термостат при 37°С на 18-20 часов.

После суточной инкубации у выделенных штаммов проверяют морфологию, тинкториальные свойства (окраска по Граму) и наличие плазмокоагулирующей активности и хло-пьеобразующего фактора.

Под микроскопом окрашенные по Граму стафилококки имеют вид фиолетово-синих кокков, располагающихся гроздьями или небольшими кучками («кружево»).

Плазмокоагулирующую активность проверяют в реакции коагуляции плазмы (РКП). С учетом результатов РКП и лецитовителлазной активности в 70-75% случаев, на четвертый день исследования может быть подтверждена принадлежность вьщеленного штамма к виду золотистого стафилококка и выдан соответствующий ответ.

Если культура обладает только плазмокоагулирующей или только лецитовителлазной активностью, то для окончательного ответа требуется определение других признаков па-тогенности - ферментация маннита в аэробных условиях или ДНКазной активности.

Определение антибиотикограммы проводят только после выделения чистой культуры. Выделенные культуры золотистого стафилококка подлежат фаготипированию.

Учет результатов фаготипирования, определения чувствительности к антибиотикам, ДНКазной активности. Окончательная выдача ответа.

Исследование воздуха седиментационным методом допускается в исключительных случаях.

Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 минут, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 часов. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 часа при температуре 37 °С. На следующий день изучают выросшие колонии.

Критерии оценки микробной обсемененности воздуха в хирургических и акушерских стационарах

Место отбора проб

Условия работы

Допустимое общее количество КОЕ в 1 м3 воздуха

Допустимое количество колоний золотистого стафилококка в 1 м3 воздуха

Операционные и родильные комнаты

До начала работы

Не выше 500

Не должно быть

Во время работы

Не выше 1000

Не более 4

Палаты для недоношенных и травмированных детей

Не выше 500

Не должно быть

Во время работы

Не выше 750

Не должно быть

Комнаты сбора и пастеризации грудного молока

Во время работы

Не выше 1000

Не более 4

Детские палаты

Подготовленные к приему детей

Не выше 500

Не должно быть

Во время работы

Не выше 750

Прокариоты обладают практически безграничными способностями к расселению по нашей планете. Микроорганизмы обычно населяют почву, воду, воздух, а также организмы растений, животных и человека. Нередко они встречаются в самых неподходящих экологических нишах. Так, некоторые виды бактерий (например, Bacillus submarinus) способны жить в океанах на глубине более 5000 метров; экстремально термофильные бактерии (Thermus aquaticus) выделяются из воды горячих источников, галофильные бактерии обнаружены в воде Мёртвого моря.

В каждой микрозоне прокариоты формируют сложнейшие микробиоценозы. Структура и функции микробиоценозов во многом зависит от совокупности действующих факторов среды. Определённые факторы среды могут стимулировать развитие микроорганизмов, либо действовать на них угнетающе.

Влажность. Развитие микроорганизмов, как и любых других организмов в первую очередь определяется условиями влажности. Именно наличие влаги обуславливает уровень процесса метаболизма в клетке, энергию роста и размножение бактерии. Различные группы прокариот характеризуются весьма разной потребностью к условиям влажности и по- разному реагируют и высушивание. Большинство бактерий при влажности среды свыше 20% развиваются нормально. Высушивание бактерий приводит к обезвоживанию цитоплазмы клетки, почти полному прекращению процессов метаболизма и в конечном итоге к переходу микробной клетки в состояние анабиоза

Температура. Прокариоты не имеют физиологического механизма, регулирующего температуру клетки, и, следовательно, их жизнедеятельность непосредственно зависит от температуры окружающей среды. Для бактерий, как и для любых других организмов, существует свой температурный диапазон. Он характеризуется тремя кардинальными точками: минимальная температура, ниже которой прекращается рост и развитие бактерий; оптимальная температура, соответствующая наивысшей скорости микроба; максимальная температура, выше которой скорость роста бактерий практически снижается до нуля.

На основании температурного диапазона, все прокариоты подразделяются на три группы психрофилы, мезофиллы, термофилы,. Психрофилы (от греческого psychros - холод, phyleo- люблю) представлены бактериями, развивающимися при низких температурах от -5°С до +35°С среди них выделяют подгруппу облигатных психрофилов, не способных расти при температуре выше +20 С. Вторую, весьма обширную подгруппу составляют факультативные психрофилы - бактерии, приспособившиеся к действию переменных температур от -5°С до +35°С.

Механизм действия низкой температуры на микробную клетку заключается в замораживании в ней процессов метаболизма, прекращении роста и размножения и переходе микроба в состояние анабиоза. К мезофилам (от греческого mejoj-средний) относится подавляющая масса прокариот, для которых температурный диапазон лежит в переделах от +1 °С до +47°С. В эту группу входят многие патогенные бактерии, вызывающие заболевание теплокровных животных и человека. Термофилы (от греческого thermos-тепло, жар) составляют достаточно обширную и разнообразную группу бактерий, растущих в температурном пределе от +10°С до +90°С. В отличии от низких температур, высокие температуры оказывают более губительное действие на микробную клетку. При повышении температуры выше максимального предела наблюдается выделение РНК из клетки,нарушается активность ферментативных систем, происходит денатурация белков, в конечном счёте вызывает необратимую деградацию клеточных структур. Особую стойкость к высоким температурам проявляют споры бактерий, выдерживающие температуру кипения в течение 2-3 часов.

Свет. Свет действует дезинфицирующим образом на бактерии. Прямые солнечные лучи убивают большинство микробов в течение нескольких часов. Патогенные бактерии более чувствительны к действию света, чем сапрофиты. Гигиеническое действие света, как естественного обеззараживающего средства, очень велико, оно освобождает от болезнетворных бактерий внешнюю среду. Наиболее сильное бактерицидное действие оказывают лучи с короткой длинной волны - ультрафиолетовые. Источником этих лучей являются ртутно- кварцевые лампы и бактерицидно - увиолевые лампы. Другие виды лучистой энергии - рентгеновские и гамма лучи, вызывают гибель микробов лишь при действии в больших дозах. От действия солнечного света бактерии защищают пигменты - каратиноиды, которые содержатся во многих бактериальных клетках.

Давление. Микроорганизмы мало чувствительны к атмосферному давлению, что, по видимому, связано с малой чувствительностью белков к его денатурирующему влиянию. Только давление 10.000 атмосфер влияет резко отрицательно?

Химические вещества. Химические ядовитые вещества, попадая в бактериальную клетку, взаимодействуют с теми или другими важными её составными компонентами и нарушают функции бактерии. Это приводит к остановке роста организма (бактериостатический эффект) или его гибели (бактерицидный эффект)

Качественный состав микрофлоры воздуха

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они переносят на значительные расстояния. В одном кубическом метре воздуха и числом санитарно-показательных бактерий. Для определения санитарно-показательных микроорганизмов используются седиментационный и аспирационный метод, но посевы производят на элективные питательные среды.

Сообщающиеся с внешним миром полости тела людей и животных заселены обильной нормальной микрофлорой довольно постоянной по качественному составу и сравнительно мало изменяющейся при инфекционных заболеваниях. Для многих видов микробов (обитателей тела здорового человека) полость рта или кишечник являются единственной природной средой обитания. Поэтому обнаружение таких микробов вне организма свидетельствует о загрязнении объекта соответствующими выделениями. Находя в исследуемом материале представителей микрофлоры полости рта, мы вправе думать о попадании слизи из дыхательных путей, в которой могут содержаться и возбудители дифтерии, скарлатины, туберкулёза и другого. Обнаруживая нормальных обитателей кишечника, мы делаем заключение о наличии фекального загрязнения и о возможности присутствия брюшнотифозных или дизентерийных палочек. Выделяемые в этих случаях микробы служат показателями санитарного неблагополучия, потенциальной опасности исследуемых объектов, а потому названы санитарно-показательными.

Качественный состав микрофлоры воздуха не стабилен и в значительной мере зависит от местных источников загрязнения. Обычно при анализах микрофлоры воздуха в большом количестве выделяются пигментные сапрофитные бактерии рода Micrococcus, споровые формы рода Bacillus, а так же актиномицеты, плесневые и дрожжевые грибы.

Споровые бактерии. Это граммположительные палочковидные бактерии с перитрихально расположенными жгутиками. Их делят на два больших рода: аэробные, которые относятся к роду Bacillus и анаэробные, относящиеся роду Clostridium. Споры бацилл могут располагаться в различных частях материнской клетки. При этом её форма либо приобретает вид булавы, веретена или барабанной палочки. У анаэробных бактерий широко распространены в почвах, водоёмах и других субстратах. Принимают участие в разложении различных органических веществ, являются возбудителями болезни человека, животных и растений.

Пигментообразующие кокковидные микроорганизмы. Эта группа представляет бактерии семейств Mikrococcus, Streptococcus. В этой обширной группе микроорганизмов встречаются как сапрофиты, обитающие во внешней среде и в организме человека и животных, так и патогенные виды, вызывающие различные гнойные заболевания. К семейству Micrococcus относятся кокки размером 0,5 - 3,5 мкм, делящиеся более чем в одной плоскости и образующие неправильные скопления. Стафилококки являются представителями нормальной микрофлоры. Основным местом локализации их служат слизистые оболочки верхних дыхательных путей человека и некоторых теплокровных животных, а так же кожные покровы. Присутствуют стафилококки и в кишечнике здоровых людей. В окружающую среду, в воздух, на предметы обихода - стафилококки попадают со слюной и мокротой при разговоре, кашле, а так же с кожи, из мест воспалений и раневых поверхностей. Стафилококки относятся к семейству Micrococcus, наиболее изученными являются три вида: St. Aureus St. epidermidis, St. saprofiticcus. Стафилококки имеют сферическую форму, располагаются в виде гроздей винограда, грамположительны, спор и капсул не образуют, неподвижны. Они неприхотливы к питательным средам, являются факультативными анаэробами, на мясопептонном агаре образуют круглые непрозрачные колонии диаметром 1 - 2 миллиметра, гладкие, блестящие, с различным пигментом. Стафилококки рекомендуются в качестве санитарно-показательных микроорганизмов для воздуха закрытых помещений. Так как стафилококки объединяют не только сапрофитные группы микробов, но и болезнетворные с размыто выраженной степенью их патогенности и вирулентности. Стафилококки являются возбудителями гнойничковых, заболеваний кожи, фурункулов, абсцессов, флегмон. В ослабленном организме проникновение стафилококков в кровь сопровождается образованием сепсиса с образованием вторичных абсцессов во внутренних органах: печени, лёгких, почках. Наиболее часто встречается у рожениц. Некоторые стафилококки, попадая в пищевые продукты и размножаясь в них, становятся причиной отравлений.

Стрептококки, так же как и стафилококки, являются обитателями верхних дыхательных путей человека и многих животных. Они постоянно и в большом количестве присутствуют в полости рта, носа и носоглотки больных с хроническими стрептококковыми инфекциями верхних дыхательных путей, а так же здоровых людей и поэтому могут попадать в воздух помещений со слюной и мокротой при разговоре и кашле. Основная трудность использования стрептококков в качестве санитарно показательных микроорганизмов заключается в том, что стрептококки представляют обширную группу, объединяющие большое количество видов: от сапрофитов до патогенных стрептококков, вызывающих такие заболевания, как скарлатина, сепсис и многие гнойно-воспалительные процессы. Стрептококки относятся к семейству Streptococcus. Вид St. pyogenes имеет наибольшее значение в патологии человека. Морфологически они представляют собой цепочки круглых или слегка овальных кокков диаметром 0,6 -1мкм грамм - положительные. Спор не образуют, неподвижны, некоторые патогенные штаммы образуют капсулу. На плотных питательных средах колонии стрептококков серые, непрозрачные, мелкие, диаметром 1мм. Стрептококки не очень устойчивы в окружающей среде, они могут сохраняться только в течении нескольких дней в пыли помещений: на белье, предметах обихода больного. В воздухе необитаемых человеком помещений стрептококки не обнаруживаются.

Актиномицеты. Это группа грамположительных организмов, способных к мицелиальному росту и образованию гиф. Мицелий у актиномицетов одноклеточный, диаметром около 1,5 мкм, различают субстратный и воздушный мицелий. На последнем образуются спороносцы, от которых отшнуриваются конидии, служащие для размножения. Все актиномицеты имеют типичную для прокариот структуру клетки. Это преимущественно аэробные организмы. Многие актиномицеты выделяют антибиотические вещества, которые используются для борьбы с инфекционными заболеваниями. Среди заболеваний человека и животных.

Плесневые грибы. Плесневые грибы принадлежат к совершенным грибам, для которых характерно наличие полового способа размножения. Наиболее часто встречающимися являются представители родов Мисоr, Penicillum, Aspergillus. Плодовое тело этих грибов чаще имеет форму головки, внутри которой заключено множество эндоспор. В настоящее время плесневые грибы привлекли внимание в связи с тем, что некоторые из них выделяют активные противомикробные вещества - антибиотики. Диаметр их гиф колеблется от 5 до 50 мкм. Клеточная стенка большинства плесневых грибов содержит хитин или близкие к нему соединения. Как возбудители заболеваний человека плесневые грибы имеют небольшое значение. Дрожжевые грибы. Клетки дрожжей округлой, овальной или палочковидной формы, диаметром 4-12 мкм. На плотных питательных средах дрожжи растут в виде выпуклых, округлых, лопастных, гладких и складчатых колоний пастообразной консистенции. Колонии дрожжей обычно либо бесцветны, либо окрашены в желтовато-оранжевый или розовый цвет. Таким образом, среди населяющих воздух микробов имеются сапрофиты, но встречаются патогенные микроорганизмы, вызывающие различные заболевания человека. Поэтому изучение микрофлоры воздуха и оценка бактериологической опасности воздуха является актуальной задачей, которой занимается санитарная микробиология.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Воздушная среда малопригодна для размножения микробов из-за отсутствия в ней питательных веществ, наличия губительных для многих бактерий солнечных лучей и т.п. Поэтому загрязненность микроорганизмами воздушной среды обычно относительно невелика. Однако воздух городских зон и мест скопления людей, особенно промышленных центров, характеризуется повышенной запыленностью. Именно пылевая частица, как правило, является благоприятной средой для жизнедеятельности микроорганизмов и их колоний. В атмосферном воздухе обнаруживается до 383 видов бактерий и 28 родов микроскопических грибов, что обусловлено многообразием источников воздушного загрязнения, которыми являются человек, дикие и домашние животные, растительные организмы, почвенный покров. Далеко не все микроорганизмы являются патогенными.

Школа является одним из мест большого скопления людей. На протяжении дня в пределах школы скапливается большое количество пылевых частиц, что служит благоприятной средой для размножения организмов. Во время уроков мы вдыхаем эти частицы, а, следовательно, и микроорганизмы тоже. Нам стало интересно, где в нашей школе наибольшее скопление микроорганизмов, поэтому изучение данной темы для нас актуально.

Перед началом исследования, мы выдвинули гипотезу: наибольшее количество микроорганизмов будет наблюдаться в местах большего скопления учащихся: учебных кабинетах, раздевалках и туалетах.

Цель работы: обнаружить в воздухе микроорганизмы.

Для достижения поставленной цели мы определили следующие задачи:

    познакомиться с литературой по данной теме;

    выяснить, какие зоны в помещении школы являются самыми часто посещаемыми, а, следовательно, самыми запылёнными;

    выявить наличие микроорганизмов в воздухе разных помещений школы.

Объект исследования: воздух разных помещений школы №30.

Предмет исследования: наличие микроорганизмов, содержащихся в воздухе в пределах школы.

При написании работы нами были использованы следующие методы:

Чтение литературы;

Наблюдение;

Эксперимент.

    Глава 1. Теоретическая часть.

    1. Обзор литературы.

Начало микробиологическому анализу воздуха было положено в середине прошлого века великим французским ученым Луи Пастером , который в своих экспериментах доказал наличие микроорганизмов в воздухе. Контакт человека с микроорганизмами в воздухе наблюдается на протяжении всей жизни, и оснований для повышенного внимания данному вопросу предостаточно. Многочисленные бактериологические анализы воздуха установили нахождение микроорганизмов, как в атмосферном воздухе, так и в воздухе закрытых помещений. Микрофлора обнаруженных организмов очень разнообразна, а воздух является для них естественным путем распространения. Учитывая этот факт, влиянию микроорганизмов мы подвергаемся на улице, дома и на рабочих местах, а взаимосвязь между чистотой воздуха и здоровьем населения очевидна. Микробиологический анализ воздуха проводят с целью изучения условий воздушной среды и разработки комплекса гигиенических мероприятий, которые направлены на создание оптимальных условий по предупреждению воздушно-капельных инфекций.

    1. Характеристика микроорганизмов

Большая часть микробов относится к группе бактерий. Эта группа широко распространена в природе, наиболее хорошо изучена, поэтому изучение микробов обычно начинается с бактерий .

Бактерии по форме своих клеток разделяются: на шаровидные - кокки, палочковидные или цилиндрические - собственно бактерии - и извитые - вибрионы и спириллы. Кроме того, имеются еще нитевидные бактерии и миксобактерии.

Палочковидные бактерии составляют наиболее обширные группы. К этой группе относятся много возбудителей инфекционных заболеваний: сибирской язвы, бруцеллеза, столбняка, кишечных инфекций.

Но среди бактерий этой группы много и полезных микробов, например интрификаторы, и бактерии, усваивающие азот из воздуха.

Извитые бактерии называются спириллами, если имеют вид спирали с несколькими завитками, и вибрионами, если имеют один завиток, не превышающий ¼ оборота спирали. Типичными представителями вибрионов являются возбудитель холеры и водные вибрионы, очень похожие на холерного вибриона, но не болезнетворные, обычные обитатели пресных водоемов, также как спириллы.

Нитчатые бактерии представляют собой длинные нити из соединенных вместе клеток. Это главным образом водные микроорганизмы .

Миксобактерии (слизистые бактерии) являются наиболее высокоорганизованными бактериями. Большинство видов имею хорошо оформленное ядро.

Внутреннее строение бактерий остается еще недостаточно изученным в связи с техническими трудностями в методике исследования.

    1. Микрофлора воздуха

Микрофлору воздуха можно условно разделить на постоянную, часто встречающуюся, и переменную, представители которой, попадая в воздух из свойственных им мест обитания, недолго сохраняют жизнеспособность. Постоянно в воздухе обнаруживаются пигментообразующие кокки, палочки, дрожжи, грибы, актиномицеты, спороносные бациллы и клостридии и др., т. е. микроорганизмы, устойчивые к свету, высыханию. В воздухе крупных городов количество микроорганизмов больше, чем в сельской местности.

Состав микрофлоры и количество микроорганизмов, обнаруживаемых в 1 м 3 воздуха (микробное число воздуха), зависят от санитарно-гигиенического режима, числа находящихся в помещении людей, состояния их здоровья и других условий. В воздух могут попадать и патогенные микроорганизмы от животных, людей (больных и носителей).

Пылевые частицы служат благоприятной средой для жизнедеятельности различных микроорганизмов. В воздухе учеными обнаружено 383 вида бактерий и 28 родов микроскопических грибов. Источниками загрязнения воздуха являются почва, вода, растения, животные, человек и продукты жизнедеятельности живых организмов.

Микрофлора воздуха зависит от микрофлоры почвы или воды, над которыми расположены слои воздуха. В почве и воде микробы могут размножаться, в воздухе же они не размножаются, а только некоторое время сохраняются. Поднятые в воздух пылью они или оседают с каплями обратно на поверхность земли, или погибают в воздухе от недостатка питания и от действия ультрафиолетовых лучей. Поэтому микрофлора воздуха менее обильна, чем микрофлора воды и почвы

Очень богат микробами воздух в закрытых помещениях, особенно в кинотеатрах, вокзалах, школах, в животноводческих помещениях и других. Вместе с безвредными сапрофитами в воздухе, особенно закрытых помещений, могут находиться и болезнетворные микробы: туберкулезная палочка, стрептококки, стафилококки, возбудители гриппа, коклюша и так далее. Гриппом, корью, коклюшем заражаются исключительно капельно-воздушным путем. При кашле, чихании выбрасываются в воздух мельчайшие капельки-аэрозоли, содержащие возбудителей заболеваний, которые вдыхают другие люди и, заразившись, заболевают. Микробиологический анализ воздуха на патогенную флору производят только по эпидемическим показаниям. Чем чище воздух в общественных местах, вокруг человеческого жилья и в комнатах, тем меньше люди болеют.

Микробы приносят вред не только здоровью человека. По воздуху распространяются также и возбудители болезней животных и растений. Микроорганизмы вместе с пылью оседают на пищевые продукты, вызывают их скисание, гнилостное разложение

    1. Выводы по 1 главе

Микробиологический анализ воздуха начал проводится очень давно. Исследования доказали, что воздух закрытых помещений очень богат микроорганизмами. Пылевые частицы, находящиеся в закрытых помещениях служат благоприятной средой для жизнедеятельности различных микроорганизмов. Состав микрофлоры и количество микроорганизмов, обнаруживаемых в 1 м 3 воздуха (микробное число воздуха), зависят от санитарно-гигиенического режима, числа находящихся в помещении людей, состояния их здоровья и других условий.

    Глава 2. Практическая часть

    1. Приготовление питательной среды

Микробы имеют свойство размножаться при попадании в питательную среду, причем из одного микроорганизма, при определенных условиях, вырастает одна колония, в которой могут быть многие тысячи микробов. Такая колония хорошо видна невооруженным глазом. Процесс роста колонии микроорганизмов называется инкубацией.

Питательную среду для посева микроорганизмов мы готовили следующим образом: В колбе объемом 750-1000 мл заварили 2 ст. ложки крахмала водорастворимого в 1 стакане воды. Образовавшийся раствор нагрели до кипения в закрытой посуде и кипятили 10 мин, не допуская сильного кипения. Полученный густой гель разлили в чашки Петри (предварительно простерилизованные в медицинском кабинете под кварцевой лампой - приложение 1), закрыли крышкой и остудили .

    1. Посев микроорганизмов

Посев микроорганизмов из воздуха мы делали следующим образом:

    Пронумеровали чашки Петри

    Чашку №1 оставили контрольной (она не открывалась на протяжении всего периода посева и инкубации)

    Чашку № 2 - 11 открыли и оставили открытой на 5 минут в исследуемых кабинетах, после чего закрыли их крышками.

    Наблюдали за числом и ростом колоний микроорганизмов в чашках Петри в течение 3-7 дней инкубации. Наблюдения фиксировали в таблице №1

    Подсчитали и описали число колоний, выросших на питательной среде в каждой чашке Петри. (Эксперимент можно считать выполненным правильно, если в чашке № 1 (контрольной) после 7 суток наблюдений выросло не более 3 колоний)

Таблица №1. Кабинеты, пределах которых проводилось исследование.

№ чашки Петри

Название кабинета (№)

Контрольная

Кабинет начальных классов

Спортзал

Гардероб (старшие классы)

Гардероб (младшие классы)

Туалет девочек

Коридор (холл 3 этажа)

Кабинет географии (318)

Кабинет информатики

Библиотека

    1. Подсчет и описание колоний

Описание колоний микробов, выросших на питательной среде, проводили по следующим показателям: форма (округлая, неправильная); поверхность (гладкая, блестящая, шероховатая, сухая, складчатая); край (ровный, волнистый, бородчатый); цвет; размер (диаметр).

В течении 14 дней мы наблюдали за ростом колоний. На 14 день у нас получились следующие результаты (таблица №2), рисунок №1.

таблица 2.

Описание колоний

Название кабинета

Описание колоний

Контрольная чашка

Контрольная чашка Петри на протяжении 14 дней оставалась закрытой. В ней мы не обнаружили ни одной колонии, содержимое чашки не изменилось. Цвет, состав и форма питательной среды остались неизменными.

Кабинет начальных классов

Питательная среда в чашки Петри практически не изменилась, кое где наблюдаются белые вкрапления гладкой формы в количестве 3 штук.

Спортзал

На питательной среде четко видна одна колония светло сиреневого цвета, площадью примерно 2 кв.см. По краям начинает образовываться колония светло коричневого цвета. Колонии имеют гладкую округлую форму с ровными краями.

Гардероб (старшие классы)

На питательной среде четко видно две выросшие колонии светло - желтого цвета небольших размеров. Края колоний волнистые, поверхность гладкая.

Гардероб (младшие классы)

На питательной среде четко видно большое количество колоний темно - коричневого цвета, маленького размера. Колонии по внешнему виду напоминают черный молотый перец. Часть колоний осела на края чашки Петри.

Туалет для девочек

На питательной среде хорошо видны 29 колоний, имеющих светло бежевый цвет. Основная часть колоний располагается в центральной части чашки Петри.

Коридор (холл 3 этажа)

На чашке Петри практически ничего не изменилось. Особенностью является то, что питательная среда оказалась сильно высушенной, на ней ничего не проросло.

Кабинет технологии (для девочек)

На питательной среде четко видно 92 колонии белого цвета. Особенностью является то, что колонии располагаются по кругу, концентрированными кольцами.

Кабинет географии (№318)

На питательной среде хорошо видны 4 колонии светло оранжевого цвета, практически полностью покрывающие чашку Петри. Особенностью является то, что питательная среда стала более жидкой.

Кабинет информатики

На питательной среде хорошо видны колонии фиолетового, белого и светло бежевого цвета. Особенностью является то, что колония белого цвета имеет пористую структуру.

Библиотека

На питательной среде хорошо видно 92 колонии, белого цвета, имеющих небольшие размеры. Колонии располагаются близко друг к другу, напоминают вкрапления. Поверх точечных колоний начинает появляться колония светло - коричневого цвета.

Рисунок 1. Количество колоний, выросших в кабинетах.

Основная часть колоний имела гладкую форму и ровные края. В кабинете информатики одна колония имела пористую структуру, а в гардеробе младших классов колонии были представлены точками (приложение 1)

Как видно из рисунка, большее количество колоний выросло в следующих кабинетах: гардероб (младшие классы), кабинет технологии (для девочек) и в библиотеке. Главная причина - в данных кабинетах на протяжении дня присутствует большое количество учащихся, а гардеробе младших классов учащиеся бывают в течении двух смен.

Совсем не выросло колоний в контрольной чашке. Причина - она не открывалась после стерилизации на протяжении всего посева. Также колонии отсутствовали в чашке, посев которой производился в коридоре. Мы предполагаем, это произошло потому, что посев проводился сразу после мытья полов и на протяжении всего дня в коридоре несколько раз проводится влажная уборка.

Как видно из таблицы, выросшие колонии имели разные цвета, размеры, форму и края. Подробное описание их и определение видового состава мы хотим сделать в дальнейшем, используя цифровой микроскоп.

    1. Выводы по 2 главе

Используя питательную среду можно вырастить колонии микроорганизмов в пределах школы. Выросшие колонии отличаются друг от друга количеством, формой, размерами, характером краев.

    Заключение.

В результате проведенного исследования, мы пришли к следующим выводам:

    Воздух закрытого помещения очень богат разнообразными микроорганизмами, которые можно обнаружить во время посева на питательной среде;

    Отсутствие колоний в контрольной чашке Петри, говорит о правильности выполнения посева.

    Максимальное количество колоний микроорганизмов характерно для кабинетов, где в течении дня наблюдается максимальное количество учащихся: гардероб, библиотека, кабинет технологии.

    Влажная уборка и проветривание заметно снижает количество микроорганизмов в воздухе, о чем свидетельствует отсутствие колоний в коридорах.

На основании полученных данных, можно говорить о том, что наша гипотеза полностью подтвердилась.

Дальнейшее направление работы:

Сделать посев в остальных кабинетах;

Определить видовое разнообразие выросших колоний с помощью цифрового микроскопа;

Донести до учащихся школы информацию о том, как важно проветривание и влажная уборка для улучшения качества воздуха в помещении.

5. Литература.

1. Аникеев В.В., Лукомская К.А. Руководство к практическим занятиям по микробиологии.- М.: “Просвещение”, 1983.

2. Гусев М. В., Минеева Л. А.. Микробиология. Третье издание. - М.: Рыбари, 2004

3. Муравьев А.Г., Пугал Н.А., Лаврова В.Н.Экологический практикум: Учебное пособие с комплектом карт-инструкций / Под ред. к.х.н. А.Г. Муравьева. - 2-е изд., испр. - СПб.: Крисмас+, 2012. - 176 с.: ил.

Интернет ресурсы:

4.http://www.ebio.ru/gri06.html

5.http://www.webmedinfo.ru/library/mikrobiologija.php

Приложения

приложение 1.

Стерилизация чашек Петри в медицинском кабинете

приложение 2.

Выросшие колонии

    Контрольная чашка

    Кабинет начальных классов

    Спортзал

    Гардероб (старшие классы)

    Гардероб (младшие классы)

    Туалет девочек

    Коридор (холл 3 этажа)

    кабинет технологии (девочки)

    Кабинет географии

    Кабинет информатики

    Микроорганизмы воздуха

    Воздух как среда обитания для микроорганизмов менее благоприятен, чем почва и вода, так как в нем содержится очень мало или не содержится совсем питательных веществ для размножения микроорганизмов. Тем не менее, попадая в воздух, многие микроорганизмы могут сохраняться в нем более или менее долго. В воздухе микроорганизмы распределены неравномерно. В пыльном и грязном воздухе микроорганизмов больше, чем в чистом, так как они адсорбируются на поверхности твердых частиц. Воздух особенно загрязнен вблизи земной поверхности, а по мере удаления от нее он становится все более чистым. В воздухе центра города микроорганизмов больше, а на окраинах меньше. Летом микроорганизмов в воздухе содержится больше, зимой меньше.

    Микроорганизмы обнаружены даже в облаках. На больших высотах встречают микроорганизмы, образующие пигменты, которые повышают их устойчивость к неблагоприятным условиям жизни, особенно к ультрафиолетовым лучам. Выше 84 км над уровнем моря микроорганизмы не обнаруживаются.

    Численность и видовой состав микроорганизмов в воздухе . В естественных условиях в воздухе обнаруживаются сотни видов сапрофитных микроорганизмов, представленных кокками (в том числе сарцинами), спорообразующими бактериями и мицелиальными грибами, отличающимися большой устойчивостью к ультрафиолетовым лучам и к другим неблагоприятным воздействиям внешней среды. Воздух открытых пространств относительно чист, а воздух закрытых помещений загрязнен значительно больше. В воздухе закрытых помещений при плохом проветривании накапливаются микроорганизмы, выделяемые через дыхательные пути человека. Патогенные микроорганизмы попадают в воздух из мокроты и слюны при кашле, разговоре, чихании. Даже здоровый человек при чихании и кашле выделяет в воздух 10…20 тысяч КОЕ, а больной человек – во много раз больше.

    Количество микроорганизмов в воздухе варьирует в больших диапазонах: от единичных бактерий до десятков тысяч КОЕ/1м 3 . Так воздух Арктики содержит 2…3 КОЕ в 20 м 3 , а в городах с промышленными предприятиями в воздухе обнаруживается огромное количество бактерий. В лесу, особенно хвойном, микроорганизмов в воздухе очень мало, на них губительно действуют фитонциды леса. Над Москвой на высоте 500 м в 1м 3 воздуха обнаружено от 1100 до 2700 КОЕ микроорганизмов, а на высоте 2000м – 500-700 КОЕ. Спорообразующие бактерии и мицелиальные грибы были найдены на высоте 20 км, другие группы микроорганизмов – на высоте 61…77 км.

    Человек в среднем вдыхает за сутки 12000…14000 дм 3 воздуха. При этом в дыхательных путях задерживаются 99,8% микроорганизмов, содержащихся в воздухе.

    Загрязнение воздуха патогенными микроорганизмами . При чихании, кашле и разговоре в воздух выбрасывается множество капелек жидкости, внутри которых содержатся микроорганизмы. Эти капельки могут часами удерживаться в воздухе во взвешенном состоянии, т.е. образуют стойкие аэрозоли. За счет влаги микроорганизмы в капельках живут дольше. Таким воздушно-капельным путем происходит заражение многими острыми респираторными заболеваниями (грипп, корь, дифтерия, легочная чума и др.). Подобный путь распространения возбудителей – одна из основных причин развития не только эпидемий, но и крупных пандемий гриппа, а в прошлом и легочной чумы.

    Помимо воздушно-капельного пути патогенные микроорганизмы могут распространяться через воздух «пылевым» путем. Объясняется это тем, что находящиеся в выделениях больных (каплях мокроты, слизи и т.п.) микроорганизмы окружены белковым субстратом, поэтому они более устойчивы к высыханию и другим факторам. Когда такие капли высыхают, они превращаются в своеобразную микробную пыль, содержащую многие патогенные микроорганизмы.

    Частицы микробной пыли имеют диаметр от 1 до 100 мкм. У частиц диаметром более 100 мкм сила тяжести превышает сопротивление воздуха, и они быстро оседают. Скорость переноса пыли зависит от интенсивности воздушных перемещений. Микробная пыль играет особенно важную роль в эпидемиологии туберкулеза, дифтерии, туляремии и других заболеваний.

    Для снижения микробной обсемененности воздуха в производственных помещениях применяют физические способы его очистки и обеззараживания. С помощью системы приточно-вытяжной вентиляции загрязненный воздух удаляется из помещений, а на его место поступает более чистый атмосферный воздух. Фильтрация поступающего воздуха через специальные воздушные фильтры значительно повышает эффективность вентиляции.

    Наибольшее распространение получил метод фильтрации воздуха через волокнистые пористые или зернистые материалы. Несмотря на то, что волокнистые фильтры имеют диаметр не менее 5 мкм и слабое уплотнение (промежутки не менее 50 мкм), они легко задерживают большинство микроорганизмов со средним размером около 1 мкм.

    Фильтры, пропитанные специальной пылесвязывающей жидкостью, задерживают до 90-95% микроорганизмов и частиц пыли, находящихся в воздухе. После очистки воздух подвергают обеззараживанию. Применяя воздушные фильтры тонкой очистки (ФТО) можно добиться эффективности очистки до 99,999%. Требуемая степень очистки воздуха в помещении определяется условиями и характером выпускаемого продукта. Современное оборудование для биологической очистки воздуха обеспечивает организацию общих и специальных зон. Линия биологической очистки воздуха, как правило, включает несколько работающих последовательно технологических элементов: масляный фильтр, фильтр грубой очистки, головной и индивидуальные фильтры тонкой очистки. Набор отдельных элементов в системе определяется конкретной задачей производства.

    Обеззараженный воздух можно получить, используя УФ-облучение. С этой целью помещение оборудуется стационарными или переносными бактерицидными лампами из расчета 2,0-2,5 Вт/м 3 объема помещения. Работа ламп в течение 6 час позволяет уменьшить количество микроорганизмов в воздухе на 80-90%. Однако следует иметь в виду, что работа обычных ламп должна проводиться в отсутствии людей, так как их излучение оказывает неблагоприятное воздействие на кожу, слизистые оболочки организма и глаза. Обеззараживание воздуха в присутствии людей можно проводить, только используя ультрафиолетовые бактерицидные облучатели-рециркуляторы, которые рассчитаны на периодическую и непрерывную работу.

    Обычно в воздухе производственных помещений пищевых предприятий должно содержаться не более 500 КОЕ/м 3 . Для некоторых производств допустимые показатели содержания микроорганизмов в воздухе более жесткие, их значения приводятся в нормативной документации.

    Санитарная оценка воздуха. Для определения микроорганизмов воздуха используют следующие методы:

    седиментационный (метод Коха), фильтрационный (воздух пропускают через стерильную воду);

    методы, основанные на принципе ударного действия воздушной струи с использованием специальных приборов. Последние методы надежнее, так как они позволяют точно определить количественное загрязнение воздуха микроорганизмами и изучить их видовой состав.

    На предприятиях пищевой промышленности, в производственных цехах и в местах хранения продуктов необходимо соблюдать определенную влажность, температуру и микробиологическую чистоту воздуха.

    Санитарную оценку воздуха закрытых помещений осуществляют по следующим показателям: КМАФАнМ (количество мезофильных аэробных и факультативно-анаэробных микроорганизмов); содержание плесневых (мицелиальных) грибов и дрожжей; количество санитарно-показательных стрептококков в 1м 3 воздуха.

    По числу клеток (КОЕ) в 1 м 3 воздуха судят о степени обсеменения стрептококком носоглоточных микроорганизмов человека и, следовательно, о возможном присутствии в воздухе патогенных микроорганизмов.

Похожие публикации