Интернет-журнал дачника. Сад и огород своими руками

Теория игр и равновесие нэша. Игры с непротивоположными интересами. Равновесие Нэша. Парето-оптимальность

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A i B j каждый из игроков имеет свой выигрыш a ij для первого игрока и b ij – для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. С помощью онлайн-калькулятора можно найти решение биматричной игры , а также ситуации оптимальные по Парето и ситуации устойчивые по Нэшу .

Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения:

  • игрок А – может выбрать любую из стратегий А 1 ,…,А m ,
  • игрок В – любую из стратегий В 1 ,…,В n .

При этом их совместный выбор оценивается вполне определённо: если игрок А выбрал i-ю стратегию А i , а игрок В – k -ю стратегию В k , то в итоге выигрыш игрока А будет равен некоторому числу a ik , а выигрыш игрока В некоторому, вообще говоря, другому числу b ik .
Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы.

Первая из таблиц описывает выигрыш игрока А, а вторая – выигрыш игрока В. Обычно эти таблицы записывают в виде матрицы.
Здесь А – платёжная матрица игрока А, В – платёжная матрица игрока В.

Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны) получаются две платёжные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игре – биматричная .

Равновесие Нэша – равновесие, когда каждый участник игры выбирает стратегию, которая является для него оптимальной при условии, что остальные участники игры придерживаются определенной стратегии.
Равновесие Нэша не всегда является наиболее оптимальным для участников. В этом случае говорят, что равновесие не является Парето-оптимальным .
Чистая стратегия – определенная реакция игрока на возможные варианты поведения других игроков.
Смешанная стратегия – вероятностная (не определенная точно) реакция игрока на поведение других игроков.

Пример №1 . Борьба за рынки сбыта.
Фирма а намерена сбыть партию товара на одном из двух рынков, контролируемых более крупной фирмой b . С этой целью она проводит подготовительную работу, связанную с определенными затратами. Если фирма b разгадает, на каком из рынков фирма а будет продавать свой товар, она примет контрмеры и воспрепятствует "захвату" рынка (этот вариант означает поражение фирмы а); если нет, то фирма а одерживает победу. Предположим, что для фирмы а проникновение на первый рынок более выгодно, чем проникновение на второй, но и борьба на первом рынке требует от нее больших средств. Например, победа фирмы а на первом рынке приносит ей вдвое большую прибыль, чем победа на втором, но зато поражение на первом рынке полностью ее разоряет.
Составим математическую модель этого конфликта, считая фирму а игроком 1 и фирму b игроком 2. Стратегии игрока 1: А 1 – проникновение на рынок 1, А 2 – проникновение на рынок 2; стратегии игрока 2: В 1 – контрмеры на рынке 1, В 2 – контрмеры на рынке 2. Пусть для фирмы а ее победа на 1-м рынке оценивается в 2 единицы, а победа на 2-м рынке – в 1 единицу; поражение фирмы а на 1-м рынке оценивается в -10, а на 2-м в -1. Для фирмы b ее победа составляет соответственно 5 и 1 единицу, а поражение -2 и -1. Получаем в итоге биматричную игру Г с матрицами выигрышей
.
По теореме эта игра может иметь либо чистые, либо вполне смешанные ситуации равновесия. Ситуаций равновесия в чистых стратегиях здесь нет. Убедимся теперь, что данная игра имеет вполне смешанную ситуацию равновесия. Находим , .
Итак, рассматриваемая игра имеет единственную ситуацию равновесия , где , . Она может быть реализована при многократном повторении игры (то есть при многократном воспроизведении описанной ситуации) следующим образом: фирма а должна использовать чистые стратегии 1 и 2 с частотами 2/9 и 7/9, а фирма b – чистые стратегии 1 и 2 с частотами 3/14 и 11/14. Любая из фирм, отклонившись от указанной смешанной стратегии, уменьшает свой ожидаемый выигрыш.

Пример №2 . Найти ситуации оптимальные по Парето и ситуации устойчивые по Нэшу для биматричной игры.

Пример №3 . Имеются 2 фирмы: первая может произвести одно из двух изделий А 1 и А 2 , вторая – одно из двух изделий B 1 , B 2 . Если первая фирма произведет продукцию A i (i = 1, 2), а вторая - B j (j = 1, 2), то прибыль этих фирм (зависящая от того, являются ли эти изделия взаимодополняющими или конкурирующими), определяется таблицей №1:

В 1 В 2
А 1 (5, 6) (3, 2)
А 2 (2, 1) (5, 3)
Считая, что фирмы заключают между собой соглашение, определить справедливое распределение прибыли, используя арбитражное решение Нэша.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться отверсии , проверенной 9 мая 2012; проверки требуют2 правки .

Перейти к: навигация ,поиск

Джон Форбс Нэш, ноябрь 2006

Равновесие Нэша (англ. Nash equilibrium ) названо в честьДжона Форбса Нэша - так втеории игр называется тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша .

Концепция равновесия Нэша (РН) впервые использована не Нэшем; Антуан Огюст Курно показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Соответственно, некоторые авторы называют егоравновесием Нэша-Курно . Однако Нэш первым показал в своей диссертации понекооперативным играм в 1950-м году, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками снулевой суммой Джоном фон Нейманом иОскаром Моргенштерном (1947).

Формальное определение

Допустим, -игра n лиц в нормальной форме, где- набор чистых стратегий, а- набор выигрышей. Когда каждый игроквыбирает стратегиюв профиле стратегий, игрокполучает выигрыш. Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком, но и от чужих стратегий. Профиль стратегийявляется равновесием по Нэшу, если изменение своей стратегии снане выгодно ни одному игроку, то есть для любого

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешитьсмешанные стратегии , тогда в каждой игреn игроков будет хотя бы одно равновесие Нэша.

Литература

    Васин А. А., Морозов В. В. Теория игр и модели математической экономики - М.: МГУ, 2005, 272 с.

    Воробьев Н. Н. Теория игр для экономистов-кибернетиков - М.: Наука, 1985

    Мазалов В. В. Математическая теория игр и приложения - Изд-во Лань, 2010, 446 с.

    Петросян Л. А. , Зенкевич Н. А., Шевкопляс Е. В. Теория игр - СПб: БХВ-Петербург, 2012, 432 с.

Эффективность по Парето

Материал из Википедии - свободной энциклопедии

Перейти к: навигация ,поиск

Оптимальность по Парето - такое состояние системы, при котором значение каждого частного критерия, описывающего состояние системы, не может быть улучшено без ухудшения положения других элементов.

Таким образом, по словам самого Парето : «Всякое изменение, которое никому не приносит убытков, а некоторым людям приносит пользу (по их собственной оценке), является улучшением». Значит, признаётся право на все изменения, которые не приносят никому дополнительного вреда.

Множество состояний системы, оптимальных по Парето, называют «множеством Парето», «множеством альтернатив, оптимальных в смысле Парето», либо «множеством парето-оптимальных альтернатив».

Ситуация, когда достигнута эффективность по Парето - это ситуация, когда все выгоды от обмена исчерпаны.

Эффективность по Парето является одним из центральных понятий для современной экономической науки. На основе этого понятия строятся Первая и Вторая фундаментальные теоремы благосостояния . Одним из приложений Парето-оптимальности является т. н. Парето-распределение ресурсов (трудовых ресурсов и капитала) при международной экономической интеграции, то есть экономическом объединении двух и более государств. Интересно, что Парето-распределение до и после международной экономической интеграции было адекватно математически описано (Далимов Р. Т., 2008). Анализ показал, что добавленная стоимость секторов и доходы трудовых ресурсов движутся противонаправленно в соответствии с хорошо известным уравнением теплопроводности аналогично газу или жидкости в пространстве, что дает возможность применить методику анализа, используемую в физике, в отношении экономических задач по миграции экономических параметров.

Оптимум по Парето гласит, что благосостояниеобщества достигает максимума, а распределение ресурсов становится оптимальным, если любое изменение этого распределения ухудшает благосостояние хотя бы одногосубъекта экономической системы.

Парето-оптимальное состояние рынка - ситуация, когда нельзя улучшить положение любого участника экономического процесса, одновременно не снижая благосостояния как минимум одного из остальных.

Согласно критерию Парето (критерию роста общественного благосостояния), движение в сторону оптимума возможно лишь при таком распределении ресурсов, которое увеличивает благосостояние по крайней мере одного человека, не нанося ущерба никому другому.

Теория игр – наука, исследующая математическими методами поведение участников в вероятных ситуациях, связанных с принятием решений. Предметом этой теории являются игровые ситуации с заранее установленными правилами. В ходе игры возможны различные совместные действия – коалиции игроков, конфликты…

Часто отмечают, что в действительности олигополия - это игра характеров - игра, в которой так же, как в шахматах или в покере, каждый игрок должен предугадать действия соперника - его блеф, контрдействия, контрблеф - настолько, насколько это возможно. Поэтому экономисты, занимающиеся теорией олигополии, были восхищены появлением в 1944 году объемистой и высоко математезированной книги под названием “Теории игр и экономическое поведение”.

Стратегия игроков определяется целевой функцией, которая показывает выигрыш или проигрыш участника. Формы этих игр многообразны. Наиболее простая разновидность – игра с двумя участниками. Если в игре участвуют не менее трёх игроков, возможно образование коалиций, что усложняет анализ. С точки зрения платёжной суммы игры делятся на две группы – с нулевой и ненулевой суммами. Игры с нулевой суммой называют так же антагонистическими: выигрыш одних в точности равен проигрышу других, а общая сумма выигрыша равна 0. По характеру предварительной договорённости игры делятся на кооперативные и некооперативные.

Наиболее известный пример некооперативной игры с ненулевой суммой – “дилемма заключённого”.

Итак. С поличным поймали 2х воров, которым предъявлено обвинение в ряде краж. Перед каждым из них встаёт дилемма – признаваться ли в старых (недоказанных) кражах или нет. Если признается только 1 из воров, то признавшийся получает минимальный срок заключения – 1 год, а другой максимальный – 10 лет. Если оба вора одновременно сознаются, то оба получать небольшое снисхождение – 6 лет, если же оба не признаются, то понесут наказание, только за последнюю кражу – 3 года. Заключённые сидят в разных камерах и не могут договориться друг с другом. Перед нам игра с некооперативная с ненулевой (отрицательной) суммой. Характерной чертой этой игры является невыгодность для обоих участников руководствоваться своими частными интересами. “дилемма заключённого” наглядно показывает особенности олигополистического ценообразования.

3.1. Равновесие Нэша

(Названное в честь Джона Форбса Нэша) в теории игр - тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша.

Концепция равновесия Нэша (РН) не совсем точно придумана Нэшем, Антуан Августин Курно показал, как найти то, что мы называем равновесием Нэша в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно. Однако Нэш первым показал в своей диссертации Некооперативные игры (1950), что равновесия Нэша должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргернштерном (1947).

Формальное определение.

Допустим, - игра n лиц в нормальной форме, где - набор чистых стратегий, а - набор выигрышей. Когда каждый игрок выбирает стратегию в профиле стратегий игрок получает выигрыш . метьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком , но и от чужих стратегий. Профиль стратегий является равновесием по Нэшу, если изменение своей стратегии не выгодно ни одному игроку, то есть для любого :

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Равновесие Нэша

Введение

1. Джон Форбс Нэш

1.1 Научные достижения Джона Нэша

2. Равновесие Нэша

2.1 Проблема существования равновесий Нэша

2.2 Проблема единственности равновесия Нэша

2.3 Проблема эффективности равновесия Нэша

2.4 Оптимальные по Парето ситуации

3. Проблемы практического применения

Заключение

Список литературы

Введение

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, принимаемых фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы и стремятся сговориться, тогда, как на других агрессивно конкурируют; использующих фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия п опроса или расходов или, когда новые конкуренты вторгаются на рынок.

Первыми провели исследование в области теории игр Дж-Ф Нейман и О Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944) Они распространили математические категории этой теории й на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирования в игре.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - игра с нулевой суммой, предусматривающий такой выигрыш, состоящий исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общее, а сумма пользы и потерь всегда равна нулю. Вторая категория - игра с положительной суммой, когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, стремится максимально повысить функцию, переменные которой им не контролируются. Если все игроки одинаково умелые, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои й намерениях, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе.

В начале 50-х Джон Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу».

1. Джон Форбс Нэш

Очень сильная личность и Нобелевский лауреат Джон Нэш является ученым, который много и плодотворно работал в сфере дифференциальной геометрии и теории игр. Однако не все знают, что математик многие годы своей жизни посвятил трагической борьбе с собственным безумием, граничащим с гениальностью.

«Хорошие научные идеи не приходили бы мне в голову, если бы я думал как нормальные люди.» Д. Нэш

Трудовую деятельность Джон Нэш начал в корпорации "РЭНД" (Санта-Моника, Калифорния), где работал летом 1950 года, а также в 1952 и 1954 годах.

В 1950 - 1951 годах молодой человек преподавал на курсах исчисления (Принстон). В этот период времени он доказал теорему Нэша (о регулярных вложениях). Она является одной из главных в дифференциальной геометрии.

В 1951 - 1952 гг. Джон работает научным ассистентом в Кембридже (Массачусетский технологический институт).

Великому ученому было трудно уживаться в рабочих коллективах. Еще со времен студенчества он прослыл чудаковатым, обособленным, заносчивым, эмоционально холодным человеком (что уже тогда указывало на шизоидную организацию характера). Коллеги и сокурсники, мягко говоря, недолюбливали Джона Нэша за эгоистичность и замкнутость.

1.1 Научные достижения Джона Нэша

Прикладная математика имеет один из разделов - теория игр, который изучает оптимальные стратегии в играх. Эта теория широко применяется в общественных науках, экономике, изучении политико-социальных взаимодействий.

Самое большое открытие Нэша - это выведенная формула равновесия. Она описывает игровую стратегию, в которой выигрыш увеличить не может ни один участник, если изменит свое решение в одностороннем порядке. Например, рабочий митинг (требующий повышения социальных льгот) может завершиться соглашением сторон или же путчем. Для взаимной выгодности две стороны должны использовать идеальную стратегию. Ученый сделал математическое обоснование сочетаний коллективной и личной выгоды, понятий конкуренции. Также он развил "теорию торгов", которая была положена в основу современных стратегий разных сделок (аукционов и т. п.).

Научные изыскания Джона Нэша после исследований в области теории игр не остановились. Ученые считают, что труды, которые математик написал после его первого открытия, даже люди науки не могут понять, очень уж они сложны и для их восприятия.

нэш математик единственность равновесие

2. Равновесие Нэша

Основной математической моделью конфликтной ситуации является игра в нормальной форме. Эта модель задается совокупностью

где множество участников или игроков;

множество допустимых стратегий игрока;

ситуация игры, возникающая в результате выбора всеми игроками своих стратегий;

выигрыш игрока в ситуации.

Важнейшим принципом принятия решений в конфликтных ситуациях является понятие равновесия Нэша.

Равновесием Нэша в игре называется набор стратегий такой, что для каждого игрока его стратегия, входящая в набор, удовлетворяет условию:

Выражение "" читается " при условии ". Оно обозначает набор стратегий, в котором все компоненты, кроме стратегии игрока, совпадают с, а стратегия есть. Данное условие показывает, что стратегия, входящая в набор, является оптимальной для игрока при фиксированных стратегиях всех остальных игроков. Таким образом, можно сказать, что равновесие Нэша это такой набор стратегий, от которого ни одному из игроков не выгодно отклоняться индивидуально.

Обсудим, как можно использовать понятие равновесия Нэша с точки зрения принятия решений. В теории игр, как и во многих других теориях, можно выделить два подхода: нормативный и позитивный. Нормативный подход состоит в том, что теория дает рекомендации, как следует действовать в той или иной конфликтной ситуации. А при позитивном подходе теория пытается описать, как на самом деле происходит взаимодействие между игроками. Изначально теория игр развивалась как нормативная. И сейчас мы обсудим понятие равновесия Нэша именно с такой точки зрения. В этом случае правило принятия решения можно сформулировать следующим образом: в конфликтной ситуации, описываемой игрой в нормальной форме, каждому участнику следует использовать стратегию, которая входит в равновесие Нэша.

Возникают следующие вопросы: всегда ли существует равновесие Нэша и является ли оно единственным? Далее приводятся несколько примеров, которые показывают, что на оба эти вопроса ответ, вообще говоря, отрицательный.

2 .1 Проблема существования равновесий Нэша

Рассмотрим игру двух лиц (), у каждого из которых имеется конечное число стратегий: , . Такие игры двух лиц с конечным числом стратегий у каждого игрока называют биматричными, т.к. для задания функций выигрыша в этом случае удобна биматричная форма записи:

Стратегиям первого игрока соответствуют строки, а стратегиям второго игрока столбцы. Элемент матрицы равен выигрышу игрока, если первый игрок использует свою -тую стратегию, а второй игрок применяет свою -тую стратегию.

Пример игры, в которой не существует равновесий Нэша

Рассмотрим следующую биматричную игру:

Игре с такими матрицами выигрышей можно дать следующую интерпретацию: происходит игра "в монетку": второй игрок загадывает "орел" или "решку", а первый игрок отгадывает. Если он угадывает правильно, то получает от второго игрока "1", иначе отдает "1" второму игроку.

Легко видеть, что в рассматриваемой игре нет равновесий Нэша. Это можно доказать непосредственной проверкой: какую бы ситуацию мы ни взяли, одному из игроков выгодно отклониться, т.к. их интересы противоположны (если выигрывает один, то проигрывает другой) и при любой фиксированной стратегии одного из игроков у другого всегда найдется стратегия, при которой он выигрывает.

2 .2 Проблема единственности равновесия Нэша

Перейдем к ответу на второй вопрос: если существует равновесие Нэша, то является ли оно единственным?

Рассмотрим биматричную игру, называемую "семейный спор". Игроки молодая супружеская пара. Они решают проблему, куда пойти вечером: на футбол или на балет. Муж предпочитает футбол, а жена балет. Но в любом случае им хочется провести вечер вместе, т.к. если они пойдут в разные места, то все удовольствие будет испорчено.

матрица выигрышей жены,

матрица выигрышей мужа.

Легко убедиться, что в этой игре существует два равновесия Нэша: когда оба игрока используют первую стратегию (т.е. супруги идут на балет), либо когда оба игрока используют вторую стратегию (т.е. супруги идут на футбол).

Согласно принципу принятия решений, основанному на понятии равновесия Нэша, игрок должен использовать стратегию, входящую в какое-либо равновесие Нэша. Допустим, каждый игрок выберет то равновесие Нэша, которое ему больше нравится. В данной игре это может привести к самому худшему результату, т.к. жена выберет балет, муж выберет футбол, и в результате они попадут в ситуацию, когда выигрыш у обоих нулевой, т.е. меньше, чем выигрыш каждого игрока в любой из точек равновесия Нэша.

Пример показывает, что необходим какой-то механизм координации при выборе стратегии, если существует несколько равновесий Нэша. Поэтому игры, подобные данному примеру, называют также "играми на координацию".

2 .3 Проблема эффективности равновесия Нэша

Рассмотрим биматричную игру, называющуюся "Дилемма заключенного". (Эта игра достаточно знаменита. Ей посвящено несколько тысяч работ, дающих различные интерпретации этой игры.) Игроками являются два находящихся под следствием человека. У каждого из них есть две стратегии: сознаться в совершенном преступлении или не сознаваться. Следователь предлагает каждому заключенному такие условия: если он сознается, а другой подозреваемый нет, то тогда первого, учитывая его помощь следствию, осудят по минимальному обвинению (на 1 год), а второму дадут максимальный срок (10 лет). Если сознаются оба, то их обоих осудят и дадут срок, соответствующий их преступлению (по 5 лет лишения свободы каждому). Наконец, если оба подследственных не сознаются, то их смогут осудить за недостаточностью улик только по части обвинения (например, за незаконное хранение оружия вместо более тяжкого преступления, которое они на самом деле совершили). В этом случае оба получат по 2 года.

Получаем следующие матрицы выигрышей ("С" сознаться, "Н" не сознаваться):

для первого игрока

для второго игрока

В этой игре существует единственная точка равновесия Нэша обоим сознаться. Но есть ситуация, которая выгоднее обоим игрокам это обоим не сознаваться. Следовательно, точки равновесия Нэша могут быть неэффективны в том смысле, что за счет отклонения обоих игроков от точки равновесия Нэша можно улучшить выигрыши каждого из них.

Описанная в примере игра имеет следующую структуру:

2.4 Оптимальные по Парето ситуации

Чтобы сформулировать обнаруженное свойство неэффективности равновесий Нэша более формально, введем понятие Парето-оптимальной ситуации.

Пусть задана игра в нормальной форме. Набор стратегий называется Парето-оптимальным, если для любого

Фактически оптимальность некоторой ситуации по Парето означает, что за счет изменения стратегий нельзя увеличить выигрыши хотя бы части игроков так, чтобы при этом не уменьшить выигрыши для остальных.

Рассмотренный пример "дилемма заключенного" показывает, что для некоторых игр не существует точек равновесий Нэша, являющихся Парето-оптимальными. В этом случае любая точка равновесия Нэша может быть улучшена за счет совместного выбора стратегий.

3 . Проблемы практического применения

Мы отметили три недостатка понятия равновесия по Нэшу:

равновесий Нэша в игре может не существовать;

равновесие Нэша может быть не единственно;

равновесие Нэша может быть неэффективно.

Но, несмотря на эти недостатки, указанное понятие играет центральную роль в теории принятия решений в конфликтных ситуациях. В 1999 году Джон Нэш, предложивший данное понятие равновесия и известный в основном именно благодаря этому, получил Нобелевскую премию по экономике.

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у игроков сложились разные представления об игре, в которой они участвуют, или, когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно применять опыт подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет учесть дополнительные переменные или факторы, имеющие возможность повлиять на ситуацию, и тем самым повысить эффективность решения.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Где же сегодня применяются открытия Нэша?

Пережив бум в семидесятых-восьмидесятых, теория игр заняла прочные позиции в некоторых отраслях социального знания. Эксперименты, в которых команда Нэша в свое время фиксировала особенности поведения игроков, в начале пятидесятых были расценены как провал. Сегодня они легли в основание «экспериментальной экономики». «Равновесие Нэша» активно используется в анализе олигополий: поведении небольшого количества конкурентов в отдельном секторе рынка.

Кроме того, на Западе теория игр активно используется при выдаче лицензий на вещание или связь: выдающий орган математически высчитывает наиболее оптимальный вариант распределения частот.

Список литературы

1. Васин А. А., Морозов В. В. Теория игр и модели математической экономики. -- М.: МГУ, 2005, 272 с.

2. Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. -- М.: Наука, 1985

3. http://dic.academic.ru/dic.nsf/econ_dict/22119

4. http://economicportal.ru/ponyatiya-all/nash_equilibrium.html

Размещено на Allbest.ru

...

Подобные документы

    Проблемы неравномерного распределения доходов среди населения. Закон распределения Парето: зависимость между размером доходов и количеством людей. Распределение Парето в теории катастроф. Методы обработки данных с распределением с тяжелыми хвостами.

    курсовая работа , добавлен 06.01.2012

    Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.

    контрольная работа , добавлен 11.06.2011

    Разработка математической модели оптимальной расстановки игроков футбольной команды на поле с учетом распределения игровых обязанностей между футболистами и индивидуальных особенностей каждого для достижения максимальной эффективности игры всей команды.

    курсовая работа , добавлен 04.08.2011

    Сравнительная характеристика эффективности и простоты применения зажиточных за Кондорсе правил голосования Копленда и Симпсона, законов Бордо и оптимальности по Парето с целью разработки автоматизированной программы для нахождения победителя выборов.

    курсовая работа , добавлен 20.08.2010

    Условия равновесия в экономической модели. Методы регулирования совокупного спроса. Исследование возможностей получения эффективных равновесий в макроэкономике. Использование монетарной и фискальной политик в процессе регулирования рыночных отношений.

    дипломная работа , добавлен 18.11.2017

    Экономическое равновесие, условия и методы его достижения, ценовые и неценовые причины нарушения. Общая модель рынка по Вальрасу, ее применение в обосновании экономического равновесия, отличия от модели Эрроу-Дебре. Устойчивость конкурентного равновесия.

    курсовая работа , добавлен 19.06.2009

    Цель сервисной деятельности, формы обслуживания потребителей. Анализ эффективности работы организации в сфере обслуживания. Понятие системы массового обслуживания, ее основные элементы. Разработка математической модели. Анализ полученных результатов.

    контрольная работа , добавлен 30.03.2016

    Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.

    реферат , добавлен 14.02.2011

    Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.

    контрольная работа , добавлен 18.01.2015

    Рассмотрение теоретических и практических аспектов задачи принятия решения. Ознакомление со способами решения с помощью построения обобщенного критерия и отношения доминирования по Парето; примеры их применения. Использование критерия ожидаемого выигрыша.

Похожие публикации