Интернет-журнал дачника. Сад и огород своими руками

Параметры стержневых и тросовых молниеотводов. Устройство и монтаж молниезащиты и заземления Варианты построения защиты от удара молнии

Жителей городов мало волнует молниезащита и заземление, государство уже о них позаботилось, обязав проектировщиков и строителей предусмотреть соответствующие технические решения. Вопрос защиты от молний особо актуален для владельцев дач и загородных домов.

Делать молниезащиту или не делать – домовладелец решает сам. Однако сооружение заземления и надежного молниеотвода уменьшает опасность пожара в разы, позволяет защитить проводку, электроприборы и жизни обитателей дома.

Опасность разряда молнии

Облака представляют собой водяной пар или мелкие кристаллы льда. Они постоянно движутся, трутся о теплые струи воздуха и электризуются. Когда разность зарядов между ними достигает критического значения, происходит разряд. Это и есть молния.

Когда между облаком и землей проводимость наименьшая, то молния ударяет в землю, весь накопленный заряд стекает в нее. Затем и нужно заземление, чтобы забрать на себя энергию разряда.

Молния ударяет в самую высокую точку сооружения, проходя минимальное расстояние от облака до объекта. По сути, получается короткое замыкание, протекают гигантские токи, выделяется огромная энергия.

Если молниезащита отсутствует, то вся энергия молнии воспринимается зданием и растекается по токопроводящим конструкциям. Последствия такого удара – пожары, поражения людей, выход из строя электротехники.

Молниезащита забирает на себя энергию разряда и по токопроводу переправляет ее через заземлитель в землю, которая ее полностью поглощает. Поэтому молниеприемники (громоотводы) и прочие элементы молниезащиты выполняются из токопроводящих материалов с высокой проводимостью.

Типы защиты

По месту расположения молниезащита делится на внешнюю и внутреннюю. Внешняя защита по принципу действия подразделяется на пассивную и активную. Устройство молниезащиты пассивного типа включает три обязательных части:

  • молниеприемник;
  • токоотвод (токовод);
  • заземлитель.

В зависимости от строения крыши устанавливаются различные молниеотводы. В активной молниезащите на вершине стрежня или мачты находится ионизатор воздуха, который создает дополнительный заряд и привлекает, таким образом, молнию. Радиус действия такой защиты значительно больше пассивной, бывает достаточно одной мачты для защиты дома и участка.

Внутренняя защита от молний

Особенно нужна молниезащита внутри зданий с большим количеством компьютерного оборудованием. Внутренняя молниезащита представляет собой комплекс устройств защиты от импульсных перенапряжений (УЗИП).

При попадании разряда молнии на линии электрической сети в ней возникают огромные кратковременные перенапряжения. Чтобы погасить их параллельно с проводниками фаза и ноль, фаза и земля, ноль и земля устанавливаются УЗИП. Это очень быстродействующие приборы со временем срабатывания от 100 нс до 5 нс.

Схема установки и характеристики УЗИП зависят от того, имеется внешняя молниезащита или нет. Они различаются конструкцией, представляют собой воздушные или газовые разрядники, варисторы, но суть одна.

При возникновении кратковременного перенапряжения шунтируют защищаемую цепь и всю энергию разряда принимают на себя. Но есть приборы и с последовательным соединением. Принцип действия тот же, при возникновении перенапряжений все падение напряжения происходит на устройстве.

УЗИП делятся на три класса. Устройства первого класса устанавливаются в главном распределительном щите. УЗИП снижает напряжение до 4 кВ. Приборы второго класса устанавливают перед вводным автоматом квартирного или домового электрического щита и снижают напряжение до 2,5 кВ.

Устройства третьего класса устанавливают в непосредственной близости от защищаемых приборов (компьютеры, серверы и подобные им устройства). Они обеспечивают снижение до 1,5 кВ. Этого снижения напряжения достаточно для большинства оборудования, особенно если продолжительность перенапряжения краткая. рекомендуется поручить специалистам.

Естественные молниеотводы

Кроме этого имеется естественные молниеотводы. Наши предки вольно или невольно тоже имели хорошую молниезащиту. Традиция высаживать около дома березу спасла не одну жизнь и не один дом. Береза, несмотря на то что она не очень хорошо проводит электрический ток, является замечательным молниеотводом и одновременно обеспечивает заземление.

А все из-за мощной корневой системы, которая расползается почти на поверхности почвы. За счет этого энергия молнии при попадании в дерево растекается по большой площади и благополучно уходит в землю. Сосна и ель в качестве молниезащиты даже лучше, но не сравнятся с березой из-за хрупкости древесины.

Конструкция молниеотводов

В общем случае, молниезащита зданий и сооружений представляет собой комплекс из молниеприемника, токопровода и заземлителя. Молниеприемники применяются в виде стержня, сети и натянутого троса.

Стержневой молниеприемник

Конструкция стержневой системы проста. Штырь молниезащиты соединяется с помощью токоотвода с металлическими штырями в грунте, обеспечивающими заземление.

Стержни (штыри) изготавливают из оцинкованной или омедненной стали высотой от полуметра до 5-7 метров. Диаметр зависит от высоты стержня и климатического района расположения. Омедненный стержень имеет лучшую электрическую проводимость по сравнению с оцинкованной сталью.

В зависимости от конфигурации здания и его кровли на крыше устанавливаются несколько стержней. Они крепятся к коньку, фронтону, вентиляционным колодцам и прочим капитальным конструкциям.

Зона влияния молниезащиты представляет собой конус с вершиной на острие молниеотвода. Стержни располагают таким образом, чтобы зоны их действия перекрывали все здание. Для стержневых молниеприемников правило защитного конуса с 90 градусной вершиной справедливо для стержня высотой до 15 м. Чем выше молниеприемник, тем меньше угол вершины защитного конуса.

Сетевой молниеприемник

Молниеприемная сеть представляет собой оцинкованный или омедненный провод диаметром 8-10 мм, покрывающий в виде сети всю крышу здания. Обычно молниезащиту в виде сетки устанавливают на плоские кровли.

Сеть формируется за счет перпендикулярно расположенных относительно друг друга проводов с определенным шагом. При помощи держателей провода соединяются между собой и крепятся к кровле. Иногда, вместо провода используют стальную полосу.

Провод или полоса обязательно должны быть соединены с заземлением. Для соединения применяют сварку, но можно его делать специальными зажимами. Зажимы для соединения электродов заземления с проводниками часто идут в комплекте, если приобретать все детали в специализированном магазине.

Тросовый молниеприемник

Тросовые молниеприемники представляют собой стальной или алюминиевый трос, натянутый между двумя мачтами. Мачты соединены с токоотводов, а тот в свою очередь с заземлением. Представьте, что трос является коньком двускатной крыши.

Тогда область под этой виртуальной крышей будет находиться под защитой от ударов молний. Таким образом, натянув над крышей дома и прилегающей территорией несколько тросов можно обеспечить надежную молниезащиту.

Токопроводы представляют собой оцинкованные или омедненные стальные провода диаметром 10 мм, часто применяют и стальные полосы сечением 40х4 мм покрытые цинком или медью. Они соединяют молниеприемники с заземлителем.

В комплект молниезащиты входят и держатели молниеприемников и токопроводов. Они выполняются из стальных и пластиковых материалов, имеют многообразные конструкции.

Расположение заземлителей

Заземление молниеотводов, в самом простом случае, представляет собой три трехметровых металлических стержня вбитых в землю на расстоянии 5 метров друг от друга. Между собой заземляющие штыри соединяются стальной полосой расположенной на глубине 50-70 см под землей.

Соединение производится методом сварки, которые затем покрываются антикоррозионным покрытием. В местах расположения штырей на поверхность должны выходить стержни для того, чтобы можно было присоединить токопроводы.

Заземление должно располагаться на расстоянии не менее 1 метра от сооружения и более 5 метров от крыльца, дорожек и других мест постоянного хождения людей. Это необходимо для того, чтобы человек не попал под шаговое напряжение, образующееся при растекании заряда молнии от заземлителя по земле.

Если здание имеет массивный железобетонный фундамент, то заземление молниезащиты рекомендуется располагать подальше от него и монтировать внутреннюю молниезащиту в виде грозоразрядников для защиты аппаратуры. Это необходимо из-за заброса части заряда на фундамент и все элементы, имеющие с ним хороший контакт, в первую очередь корпуса оборудования, инженерные коммуникации.

Требования к сопротивлению

Контур заземления дома должен быть соединен с заземлением молниезащиты через стальные проводники, которые сваривают между собой. Сопротивление заземления должно быть как можно меньше. Нормативное значение составляет 10 Ом для грунтов с удельным сопротивлением до 500 Ом, но при больших его значениях допускается иное сопротивление, которое вычисляется по формуле:

Rз – сопротивление заземлителя, а ρ – удельное сопротивление грунта.

Для достижения нормативного значения иногда заменяется грунт. Выкапывается траншея, закладывается новый грунт с соответствующими характеристиками, и после этого монтируется заземление. Другой вариант заключается в добавлении химических реагентов.

После установки заземления молниезащиты необходимо регулярно замерять его сопротивление. Если оно выходит за пределы нормативного значения, то придется добавить штырь или заменить на новый.

При этом нужно уделять пристальное внимание соединениям между элементами устройства. Использование нержавеющих материалов значительно увеличит срок службы заземлителя.

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода , которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод - это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

По количеству одинаковых молниеприемных частей - одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Тросовый - это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.


Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h 0 и радиусом его основания r 0 .

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения r x на высоте h x и откладываем его от оси молниеприемника до крайней точки объекта.

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зона защиты, как уже было сказано выше, - это круговой конус с вершиной в верхней точке стержня молниепремника.

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле» .

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Круглые и плоские проводники, тросы

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

Токоотводы, держатели токоотводов

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

Клеммы для водосточных желобов, клеммы, соединительные компоненты

Молниеприемники, компоненты

Изолированная молниезащита

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе .

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

    АО "Мосводоканал", Физкультурно-оздоровительный комплекс дома отдыха «Пялово»

    Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

    Вид работ: Проектирование и монтаж системы внешней молниезащиты.

    Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

    ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие: производства фирмы OBO Bettermann.

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

Следующая страница>>

§ 7. Молниезащита. Виды молниеотводов и их защитные зоны: стержневой одиночный, стержневой двойной, антенный.

Во время грозы разряды атмосферного электричества, имеющего напряжение до 150000000 В и силу тока до 200000 А, способны вызвать взрывы, загорания и разрушения наземных объектов. В целях обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от электрических, тепловых и механических воздействий молнии выполняется молниезащита.

Молниезащита представляет собой комплекс защитных устройств, предусмотренных СН 305-77. Нормами установлены три категории устройств молниезащиты в зависимости от взрывной и пожарной опасности, вместимости, огнестойкости и назначения защищаемых объектов, а также с учетом средней грозовой деятельности в год в географическом районе расположения объекта.

Объекты I и II категорий защищают от прямых ударов молнии, от электростатической и электромагнитной индукции, от заноса высоких потенциалов через надземные и подземные металлические коммуникации.

Объекты III категории защищают от прямых ударов молний и от заноса высоких потенциалов через надземные металлические коммуникации, а установки с корпусами из железобетона или синтетических материалов и плавающие крыши - и от электростатической индукции.

Наиболее опасен прямой удар молнии, когда возникает непосредственный контакт молнии с объектом, сопровождающийся протеканием через него тока молнии. Защита зданий и сооружений от прямых ударов молнии осуществляется молниеотводами, воспринимающими молнию и отводящими ее ток в землю.

Защитное действие молниеотвода основано на том, что молния поражает наиболее высокие и хорошо заземленные металлические сооружения. Следовательно, сооружение не будет поражено молнией, если оно находится в зоне защиты молниеотвода. Зона защиты молниеотвода - часть пространства, примыкающая к молниеотводу, которая обеспечивает защиту сооружения от прямых ударов молнии с достаточной степенью надежности (99%).

Быстрые изменения тока молнии порождают электромагнитную индукцию - наведение потенциалов в незамкнутых металлических контурах, создающее опасность искрения в местах сближения этих контуров. Это называется вторичным проявлением молнии.

Возможен также занос наведенных молнией высоких электрических потенциалов в защищаемое здание по внешним металлическим сооружениям и коммуникациям.

Защита от электростатической индукции достигается путем присоединения металлических корпусов электрооборудования к защитному заземлению или к специальному заземлителю.

Для защиты от заноса высоких потенциалов подземные металлические коммуникации при вводе в защищаемый объект присоединяют к заземлителям защиты от электростатической индукции или электрооборудования.

Молниеотводы состоят из несущей части (опоры), молниеприемника, токоотвода и заземлителя. Существует два типа молниеотводов: стержневой и тросовый. Они могут быть отдельно стоящие, изолированные и не изолированные от защищаемого здания или сооружения (рис. 86, а-в).

Рис. 86. Виды молниеотводов и их защитные зоны :

а - стержневой одиночный; б - стержневой двойной; в - антенный; 1 - молниеприемник; 2 - токоотвод, 3 - заземление

Стержневые молниеотводы представляют собой один, два или больше вертикальных стержней, устанавливаемых на защищаемом сооружении или вблизи него. Тросовые молниеотводы - один или два горизонтальных троса, каждый закрепленный на двух опорах, по которым прокладывают токоотвод, присоединенный к отдельному заземлителю; опоры тросового молниеотвода устанавливают на защищаемом объекте или вблизи него. В качестве молниеприемников используют круглые стальные стержни, трубы, стальной оцинкованный трос и др. Токоотводы выполняют из стали любой марки и профиля сечением не менее 35 мм 2 . Все части молниеприемников и токоотводов соединяют сваркой.

Заземлители бывают поверхностные, углубленные и комбинированные, изготовленные из стали различного сечения или труб. Поверхностные заземлители (полосовые, горизонтальные) укладывают на глубине 1 м и более от поверхности земли в виде одного или нескольких лучей длиной до 30 м. Углубленные заземлители (стержневые вертикальные) длиной 2-3 м забивают в грунт на глубину 0,7-0,8 м (от верхнего конца заземлителя до поверхности земли).

Сопротивление заземлителя для каждого отдельно стоящего молниеотвода не должно превышать для молниезащиты зданий и сооружений I и II категорий - 10 Ом и III категории - 20 Ом.

Обустройство громоотвода на дачном участкеважное условие безопасности нахождения на нем во время непогоды. Разряды электрического тока огромной силы при наличии громоотвода не оказывают влияние на конструкции дома и остальные элементы, находящиеся в зоне защиты. Однако не стоит думать, что громоотвод препятствует ударам молнии. Все обстоит иначе. Он становится проводником для отвода разряда от дома, уводя ток силой до 100 тысяч ампер в заземлитель.

Варианты устройства громоотвода

Классический громоотвод может выполняться в одном из двух вариантов: в виде одиночного стержня или системы тросов, натянутых между молниеприемниками. Первый вариант обычно применяется для защиты отдельного дома, в то время как второй – для создания безопасной зоны на целом участке. Тросовый громоотвод также рекомендован для зданий, имеющих значительную длину.

Составные части громоотвода

В защите от молний в первую очередь нуждаются дома с крышей из металла или металлочерепицы, так как такие варианты не имеют заземления, поэтому во время грозы накапливают на себе электрические заряды.

В случае с металлической крышей без изоляционного слоя, имеющей толщину покрытия для железа – 4 мм, для меди – 5 мм или для алюминия – 7 мм, возможно упрощенное устройство громоотвода, когда роль молниеприемника берет на себя ее поверхность. В таком случае через каждые 20 метров крыши производится заземление. Здесь нужно учитывать качество кровли, ведь если имеются какие-то разрывы, то нужного эффекта от такого молниеприемника не будет.

В остальных случаях громоотвод должен состоять из следующих элементов:

  • молниеприемника (1) в виде тонкого электрода или системы электродов, устанавливаемых над домом на определенной высоте;
  • токоотвода (2) – кабеля, соединяющего приемник с заземлением;
  • заземлителя (3), уводящего ток в землю.

Молниеприемник

Элементом, в который при наличии громоотвода ударяет молния, является молниеприемник. Выполняется он обычно в виде стержня из стали, меди или другого материала со сходной проводимостью. Не нужно покрывать его краской или лаком, чтобы избежать коррозии, иначе он потеряет нужные свойства.

Площадь сечения: для стали – 50 кв. мм, для меди – 35 кв. мм, для алюминия – 70 кв. мм.

Установить молниеприемники можно с разных сторон или по центру крыши. Если устанавливается несколько молниеприемников, то они соединяются в общую цепь, замкнутую на заземлитель. Стержень можно расположить не только на поверхности крыши, но и на печной трубе или ближайшем высоком дереве. Оптимальной будет высота не более 15 метров. Если он устанавливается на дереве, то крепление производится таким образом, чтобы стержень возвышался над кроной не менее чем на 0,5 м и на 10–15 см выше дома.

Кроме стрежней возможны варианты защитной сетки (арматура толщиной 6 мм) и тросовой системы. Второй способ является более рациональным для дачного дома, так как трос натягивается на высоте выше уровня крыши, а сетка размещается на самой кровле. Трос диаметром не менее 5 мм натягивают по коньку крыши на стойках, после чего опускают вниз, где соединяют его с заземлителем. Таким образом, он выполняет и функцию молниеприемника и токоотвода.

Также в качестве приемников могут использоваться отдельные части строения (водосточные трубы, металлические ограждения). Их применение разрешено, если они имеют сечение большее, чем нужно для нормальной защиты.

Токоотвод предназначен для соединения молниеприемника и заземлителя. Выполняется он из алюминиевого или медного провода большого сечения. Для этих целей подойдет витой провод, который применяется для прокладки воздушных линий электропередач. Крепление токоотвода осуществляется с использованием клеммников, муфт или обжимных трубок.

Расстояние между молниеприемником и заземлителем должно быть минимальным, поэтому провод направляется по прямой вниз. Количество токоотводов зависит от площади дома. Для коттеджей площадью около 200 кв. м рекомендуется устанавливать 2 токоотвода на расстоянии примерно 20 м друг от друга.

Фиксируется он на специальном шесте или непосредственно на стене дома с помощью пластикового крепежа. Для защиты токоотвода можно изолировать его от воздействия окружающей среды при помощи кабель-канала.

Заземлитель

Так как заземлитель нужен для отвода разряда молнии в грунт, то он должен обладать маленьким электрическим сопротивлением. Для этих целей подойдут как дорогие материалы, такие как медь, алюминий, латунь и другие нержавеющие металлы, так и более дешевая обычная сталь. Заземлитель не должен иметь повреждений и следов ржавчины, так как они могут стать причиной уменьшения диаметра стержней из-за разрушения металла.

Для качественного заземления может применяться не один, а несколько стержней, которые погружаются в грунт вдали от дорожек и кровли, особенно если она изготовлена из легковоспламеняющегося материала. В дачных условиях в качестве заземлителя также можно использовать любой крупный металлический предмет, имеющийся под рукой: спинку от старой кровати, чугунною ванну, арматурную сетку и подобное.

Тип заземления зависит от параметров дома и особенностей грунта. Сухой грунт отличается низким уровнем грунтовых вод. Чтобы ток доходил до влажной почвы, необходимо вертикальное заземление. Заземлитель в этом случае выполняется из двух стержней сечением 100 мм и 2-3 м в высоту, вбиваемых на расстоянии 3-4 м друг от друга. Стержни соединяются между собой проволокой, тросом (медный, алюминиевый) или лужеными пластинами железа, к центру которого приваривается токоотвод.

Для влажного грунта характерен более высокий уровень грунтовых вод, поэтому можно не выполнять вертикальное заземление, заменив стержни уголками полосовой стали, водопроводными трубами или другими подобными металлическими элементами. Укладывается горизонтальный заземлитель на глубину 1 м.

В данном случае роль заземлителя может выполнять и токоотвод, уложенный в землю таким образом, чтобы занять как можно большую площадь соприкосновения с почвой. Соединенная конструкция может иметь форму гребешка (буквы Ш) или треугольника. Недопустимо при крепеже проволоки применение ручной скрутки и плоскогубцев, разрешается только обычная или холодная сварка.

Размещению заземлителя нужно уделить отдельное внимание. Это должно быть удаленное от дома и дорожек место, недоступное для детей и домашних животных, желательно огражденное. Минимальное расстояние до дома должно составлять не менее 1 м.

Так как вода является отличным проводником электрического тока, то лучше, если почва вокруг заземлителя будет влажной, тогда разряды будут быстро уходить в землю, не накапливаясь на стержне. Обеспечить дополнительную влажность можно с помощью потока дождевой воды из стока с крыши либо целенаправленным поливом почвы.

Для каждого строения необходимо произвести расчет громоотвода, так как каждая конфигурация способна обеспечить защитную зону различных размеров. Параметры данной зоны можно рассчитать самостоятельно, учитывая особенности и габариты дачного дома.

Одиночный стержень образует защитную зону, которая по геометрии близка к конусу, имеющему угол при вершине примерно 45°. Вершина этого конуса будет находиться в наивысшей точке громоотвода. У молниеприемника тросового типа зона защиты имеет более сложную геометрию, в которой трос служит ребром, а каждый стержень образует свой конус.

Расчет защитной зоны одиночного стержня можно произвести по следующей формуле:

где R – радиус зоны над самой высокой точкой дома, h – расстояние от самой высокой точки дома до пика громоотвода.

Чтобы выяснить, достаточно ли высоты стрежня для защиты определенной зоны на уровне земли, можно воспользоваться следующим расчетом. Допустим, высота конуса будет обозначена h o , радиус на земле – R o , высота здания – h x , радиус на уровне высоты здания – R x , высота стержня – h. Тогда с учетом высоты имеющегося громоотвода и высоты дома неизвестные значения будут вычисляться по формулам:

R x = 1,5*(h-h x /0,92).

На практике расчеты выглядят так: если стержень имеет длину 10 м, то радиус зоны защиты на земле будет составлять 1,5*10 = 15 м, остальные параметры вычисляются аналогично.

Для расчета необходимой длины стержня можно воспользоваться теми же формулами, подставив в них желаемый радиус защитной зоны. В случае со сложной геометрией молниеприемника нужно нарисовать графическую модель дома и громоотвода и высчитать зону защиты геометрическим путем.

Высота громоотвода не должна превышать 12 м, поэтому, если не удается уложиться в данные ограничения, используя одиночный стержень, для расширения защитной зоны рекомендуется использовать несколько мачт.

Установка громоотвода

Чтобы установка громоотвода была осуществлена правильно, стоит придерживаться следующей методики:

  1. Измерить высоту крыши и определить ее геометрию. Для наглядности начертить схему, по которой можно определить будущую защитную зону.
  2. Определиться с типом молниеприемника. Для квадратных домов достаточно одиночного стержня, для длинных строений оптимально применение тросовой системы.
  3. Произвести расчет защитной зоны и определить нужную высоту стержня (стержней). Минимальное сечение молниеприемника должно соотноситься с его высотой в пропорции 5 кв. мм на метр.
  4. Определить точку крепления молниеприемника и зафиксировать его на крыше или стене.
  5. Выкопать яму для заземлителя и поместить его на нужную глубину.
  6. Соединить между собой заземлитель и молниеприемник.
  7. Проверить громоотвод мультиметром. Его сопротивление не должно превышать 10 Ом.

Обустроить громоотвод можно и на дереве, которое в 2,5 раза выше дома и располагается на расстоянии не менее трех метров от него. Молниеприемник в таком случае крепится на длинном металлическом шесте, фиксируемом на дереве с помощью хомутов из синтетического фала. Соединение с заземлителем осуществляется проволокой не менее 5 мм в сечении.

Дальнейшая эксплуатация

Установленный громоотвод не нуждается в особом уходе. Его нужно лишь периодически проверять на отсутствие повреждений и качество металлических соединений. Если стержень молниеприемника уменьшился в диаметре или места стыков потеряли целостность, то данные элементы требуют замены. Место расположения заземлителя также должно подвергаться проверке, а земля вокруг него поддерживаться во влажном виде.

Молниезащита сельской индивидуальной малоэтажной застройки в соответствии с широко распространенным опытом должна осуществляться при помощи молниеприемников на крышах домов или на высоких деревьях, высота которых в 2-2,5 раза выше домов застройки. Эти рекомендации исходят из того, что сооружение предлагаемых молниеотводов не потребует значительных материальных затрат, при этом забывая, что кровля стоит больших денег и требует бережного к ней отношения, а установка молниеприемников на деревьях на высоте 15- 20 м не может быть рекомендована по соображениям техники безопасности.
Подавляющее большинство строений в сельской местности покрыты шифером, дранкой или соломой, не допускающими без опасности их повреждения установки молниезищитных устройств. И только строения, покрытые металлом, могут быть оборудованы такими молниеприемниками.

В качестве универсального молниезащитного устройства может быть предложен одиночный стержневой молниеотвод с заземляющим устройством, представленный на рис. 2.

Преимуществом одиночного стержневого молниеотвода является его универсальность, возможность путем выбора соответствующего места защитить значительные площади с несколькими строениями, а также долговечность, простота обслуживания и т.д.

Цель нашей статьи - не только ознакомить читателей с методикой расчета молниеотводов, но и предложить конструкцию, на основе которой можно спроектировать и построить молниеотвод меньшей высоты. Для изготовления молниеотвода могут быть использовны бывшие в употреблении трубы, швеллеры и уголки.

Изготовление молниеотвода доступно тем, кто способен выполнять простейшие слесарные работы: резку металла, в том числе и абразивным кругом, сверление, опиловку и т.п. Сварочные работы должны выполняться сварщиком или тем, кто имеет опыт сварочных работ. Подъем мачты рассчитан на то, что эта операция будет производиться без использования специальных машин силами 3-4 человек. Как следует из рис. 2, молниеприемник и молниеотвод должны крепиться на мачте, высота которой зависит от размеров зоны защиты молниеотвода.
На рис. 8 представлена конструкция молниеотводов, выполненная из металла, в силу чего она может быть использована и как молниеприемник и как молниеотвод.

Представленный молниеотвод состоит из узлов мачты и основания, соединенных между собой осью. На оси узел мачты, находящийся при изготовлении в горизонтальном положении, поворачивают и устанавливают в вертикальное положение. Такая конструкция позволяет избежать работ на высоте и дает возможность производить осмотр, окраску и ремонт мачты в более удобном горизонтальном (опущенном) положении.

Для предотвращения раскачивания мачты под действием ветров ее укрепляют с помощью трех растяжек.

Узел мачты представляет собой платформу, к которой приваривают мачту, состоящую из 5 труб (рис. 8, дет. 1-5), соединенных сваркой. Узел основания состоит из платформы, аналогичной платформе узла мачты, но сваренной в зеркальном отражении (то есть полки однозначных деталей должны быть обращены навстречу друг другу), как это показано на рис. 8.


Рис. 8. Конструкция металлического одиночного молниеотвода (номер, название, сортамент, размеры и количество заготовок). Узел мачты:
1 - труба Ду20, L=3,15 м, кол. 1 шт.;
2 - труба Ду25, L=3,15 м, кол. 1 шт.;
3 - труба Ду32, L=4,15 м, кол. 1 шт.;
4 - труба Ду40, L=5,15 м, кол. 1 шт.;
5 - труба Ду50, L=5,00 м, кол. 1 шт.;
6 и 16 - швеллер № 12, L=600 мм, кол. 2 шт.;
7 и 17 - швеллер № 12, l_=240 мм, кол. 4 шт.;
8 - косынка, лист толщ. 4 мм, треуг. 800x200 мм, кол. 3 шт.;
9 - полупетля: уголок 50x50 мм, L-170 мм, кол. 2 шт.;
10 - болты М12, кол. 6 шт.;
11 - прокладки, лист толщ. 1 мм, кол. 6 шт.;
12 - ось, круг (16 мм, L=700 мм, кол. 1 шт.;
13 - угольник стопорящий, уголок 50x50,
Ц=220 мм, кол. 1 шт.;
14 - болты М12, кол. 2 шт.;
15 - прокладки, лист толщ. 1 мм, кол. 6 шт.
Неподвижный узел:
18 - кронштейн, уголок 50x50 мм, 1_=180 мм, кол. 2 шт.;
19 - полупетля, уголок 50x50 мм, 1_=180 мм,
кол. 2 шт.;
20 - нога, труба ДуЮО, длина определяется
расчетом, кол. 3 шт.;
21 - пластина, лист толщ. 4 мм, 250x250 мм,
кол. 3 шт.;
22 - технологическая мачта, труба Ду50,
L=4500 мм, кол. 1 шт.;
23 - стремянка, круг Ф12, 1_=210 мм, кол. 2 шт.;
24 - растяжка, кол. 3 шт.;
25 - труба Ду32, 1_=120 мм, кол. 1 шт.;
26 - звенья цепи, кол. 3 шт.;
27 - пластина, кол. 1 шт.;
28 - упоры, кол. 3 шт.;
29 - фигурная шайба, кол. 3 шт.;
30 - швеллеры якоря (швеллер № 12, 1_=1500 мм, кол. 4 шт.; L=600 мм, кол. 4 шт.)

К платформе с нижней стороны приваривают три ноги, к нижней части которых также приваривают пластины. Длина ног зависит от глубины промерзания почвы и вычисляется по формулам, приведенным на рис. 11. Угольник 13 служит для стопорения поднятой мачты. Стопорение производят с помощью двух болтов Ml2, стягивающих угольник 13 с дет. 18, принадлежащей узлу основания.

Для регулировки положения мачты в поднятом состоянии предусматриваются прокладки. Под каждой из полупетель 9 и под болтами угольника 13 устанавливают пакет прокладок толщиной 3 мм. Форма прокладок должна обеспечивать возможность их удаления без снятия полупетель 9 и угольника 13.
Примерная форма прокладок представлена на рис. 8, дет. 11 и 15.

После изготовления деталей молниеотвода необходимо произвести сборку узла мачты и узла основания. Сборку узла мачты начинают со сборки самой мачты.
Последнее звено мачты (дет. 5) изготовлено из газоводопроводной трубы Ду50 (2") с внутренним диаметром 53 мм. В нее должна вставляться дет. 4 - труба Ду40 (1 1/2") с наружным диаметром 48 мм. Зазор между трубами составляет 5 мм или 2,5 мм на сторону. Для центрирования труб необходимо к концу трубы дет. 4 прихватить сваркой четыре предварительно подогнутые пластины толщиной 2,5 мм, длиной 150 мм, разведенные между собой на равные расстояния. После опиловки (если в этом возникнет потребность) вставить обработанный конец трубы 4 в трубу 5 на глубину 150 мм. На ровной достаточно твердой площадке (например, дорожке) уложить соединенные трубы дет. 4 и дет. 5 и с помощью подкладок выставить их в горизонт, после чего сделать первую прихватку. Повернув трубы на 180°, вновь выставив их в горизонт, делаем вторую прихватку. Повторяем операцию, повернув сваренные трубы на 90°.

Производим проверку - трубы, повернутые под любым углом, должны сохранять параллельность. Убедившись, что сваренные трубы соосны,. окончательно обвариваем стык. Через ранее просверленные в трубе дет. 5 четыре отверстия диаметром 10 мм, расположенные в 120 мм от свариваемого стыка, сварить дет. 4 и 5, как это показано на рис. 8. Отличительной особенностью соединения дет. 4 с дет. 3 является то, что наружный диаметр дет. 3, равный 42,3 мм, будет больше внутреннего диаметра трубы дет. 4-41 мм. Излишний металл с дет. 3 удаляют при помощи напильника. Соединение дет. 3 и 2 проводят аналогично соединению дет. 4 и дет. 5, а соединение дет. 1 и 2 должно производиться без предварительной обработки. На этом сборку мачты заканчивают. Собранную мачту необходимо уложить на козлы с опорой на диаметры 2" и 1 1/2", как это показано на рис. 9-1.

Следующим этапом работы является изготовление платформ узлов мачты и основания. Платформы сварены из деталей 6 и 7, 16 и 17. На верхнюю часть платформы узла мачты в дальнейшем приваривают мачту, в силу чего сваренные детали должны образовать правильную плоскость. Детали платформы целесообразно сваривать на плоском металлическом листе. Во избежание сварочных деформаций детали 6 и 7 должны быть предварительно прихвачены с обеих сторон, в случае необходимости отрихтованы и только после этого обварены.

Для сборки платформ узлов мачт и основания необходимо платформу узла основания установить на верстак, затем размешают прокладки толщиной 3-4 мм и далее - платформу узла мачты. Потом собираем на болтах детали, образующие узел поворота и стопо рения платформ (рис. 8, дет. 9-15 и 18, 19). Проверяем возможность поворота и стопорения платформ узлов мачты и основания, после чего детали, закрепленные болтами на платформах, обвариваем. Для окончательной сборки к платформе узла основания приваривают ноги, к которым ранее были приварены пластины (рис. 8, дет. 20 и 21).

Для того чтобы мачта стояла строго вертикально, необходимо, чтобы верхняя плоскость платформы узла мачты, присоединенная к платформе узла основания и застопоренная болтами дет. 14, после установки и бетонирования должна быть в строго горизонтальном положении. Глубина котлована под установку узла основания зависит от глубины промерзания грунта. Формулы для определения глубины котлована представлены на рис. II.

Для установки узла основания необходимо выкопать котлован, глубина которого должна быть больше глубины промерзания.


Рис. 9. Этапы сборки молниеотвода


Это необходимо для того, чтобы во время замерзания и оттаивания грунта пучение не могло изменить вертикального положения мачты. В том случае, если грунты не подвергаются пучению (например, в случае водоненасышенных песчаных грунтов), глубина ямы может быть уменьшена до 1000 мм. Дно ямы должно иметь диаметр не менее 700 мм. На дно ямы укладывают слой бетона толщиной 150 мм. По истечении двух суток устанавливают узел основания в сборе с платформой узла мачты, размещают с помощью подкладок под ноги верхнюю плоскость платформы узла мачты в горизонт и фиксируют раствором положение узла основания, оставив в таком положении еще на трое суток. По истечении этого срока проверяют положение верхней плоскости платформы подвижного узла. Если оно не изменилось, заливают второй слой бетона толщиной 150 мм.

Такая фундаментальная заделка ног необходима для того, чтобы предотвратить возможность «выталкивания» ног, которое возможно даже в песчаных грунтах, так как вес всей конструкции не превышает 160 кг. По истечении 7-8 дней часть конструкции узла основания, выступающая над бетонной заливкой, должна быть покрыта двумя слоями битумной мастики, и после ее высыхания яму заполняют грунтом с утрамбовкой и сооружением отмостки, как это показано на рис. 10-III.

Приварка мачты к платформе является одной из наиболее ответственных операций, исправление которой практически невозможно.

К платформе (в месте приварки мачты) необходимо приварить муфту Ду-50. Приваренная муфта может обеспечить только положение мачты и ее удержание, но не обеспечивает ее перпендикулярность по отношению к платформе. Для обеспечения перпендикулярности необходимо, чтобы прямой уголок привариваемых косынок был проверен по слесарному угольнику и в случае необходимости доработан.

На мачту, уложенную на козлы, наворачивают платформу, мачту выставляют в горизонт, в угольнике освобождают место под приваренную муфту и закрепляют его на прихватках. Уровнем проверяют перпендикулярность платформы и мачты. Мачту с прихваченной платформой поворачивают на 180° и, убедившись, что перпендикулярность не нарушена, делают прихватку. Аналогичным образом устанавливают остальные косынки, после чего весь узел обваривают (рис. 9-1, 9-2, 9-3).


Рис. 10. Подъем и закрепление молниеотвода


Для соединения на петле узлов мачты и основания необходимо узел мачты подвесить на гаражной лебедке, как это показано на рис. 9-4, совместить отверстия и вставить ось (рис. 8, дет. 12).

Для подъема мачты необходима дополнительная съемная монтажная мачта. В качестве монтажной мачты используется труба Ду-50 (рис. 8, дет. 22). Длина выступающей части мачты за габариты платформы равна 4 м. Монтажную мачту к платформе крепят двумя стремянками (рис. 8, дет. 23), изготовленными из круглой стали диаметром 10 мм.

Монтаж одиночного стержневого молниеотвода содержит следующие технологические операции: подвешивание растяжек, подъем мачты и фиксирование ее в вертикальном положении, закрепление растяжек на якорях, натяжение растяжек и присоединение токоподвода от заземлителя к узлу мачты.
Верхние концы растяжек (рис. 8, дет. 24) крепят к кольцу с крючками, состоящему из трубы Ду-32 (дет. 25) с приваренными к ней тремя звеньями цепи, у которых срезаны с одной стороны закругленные части (дет. 26). Для предотвращения разгиба приваренных звеньев, сверху накладывают пластину (дет. 27), положение которой фиксируют тремя упорами (дет. 28).

К нижним концам растяжек приваривают шпильки с резьбой Ml2. Длина нарезанной части шпилек равна 150-200 мм. Шпильки пропускают через отверстия в швеллерах якоря (дет. 30). Для предотвращения деформации шпилек под гайку под-кладывают фигурные шайбы, изготовленные из трубы Ду-15 (дет. 29).
Якорь состоит из швеллера (дет. 30) любого номера, но желательно не менее № 10, и приваренной к нему поперечины того же профиля, длина которой 0,6-0,8 м. Для установки якоря необходимо отрыть котлован на глубину 0,5 м, забить швеллер, как это показано на рис. 8, после чего засыпать котлован грунтом с утрамбовкой последнего.
Вес растяжек при определении сил, действующих во время подъема, не учитывался ввиду его малой величины.

По окончании подъема и установки мачты в строго вертикальном положении, растяжки присоединяют к якорям и натягивают. Натяжение растяжек должно быть одновременным и равномерным, о чем можно судить по величине провиса каждой из них. В окончательном виде растяжки должны иметь небольшой, но одинаковый провис, что свидетельствует о равномерности натяга.

Подъем мачты производят с помощью лебедки, установленной в 15 м от молниеотвода и закрепленной на якоре, как это показано на рис. 10. Конструкция якоря с исполнительными размерами представлена на рис. 10-I. Учитывая, что якорь может быть использован в дальнейшем, например, при прокрашивании мачты, которое должно проводиться один раз в 3-5 лет, его сохраняют столько времени, сколько будет эксплуатироваться молниеотвод. Поэтому якорь нужно сооружать из металла, окрашивать битумной мастикой, что позволяет ему длительное время не терять прочности. Предлагаемая конструкция якоря этим требованиям отвечает.

Общая длина гибкой связи между лебедкой и мачтой составляет около 26 м, из которых во время подъема на барабан лебедки будет наматываться только 8 м троса. Из этого следует, что могут быть использованы строительные лебедки или ручные червячные детали, рассчитанные на высоту подъема 9 или 12 м. Из рис. 10 видно, что часть гибкой связи может быть выполнена не тросом, а звеном из проволоки, которое будет постоянно закреплено на мачте. При вертикальном положении мачты, нижнее кольцо звена будет находиться в двух метрах от земли, что облегчит отсоединение и присоединение троса.
Звено из проволоки представлено на рис. 10-V и 10-VI.

Можно использовать любой стальной трос, диаметр которого не менее 8 мм. Петли на тросе образуют с помощью зажимов, представленных на рис. 10-IV.
Количество зажимов при образовании петли должно быть не менее трех. Перед подъемом мачту устанавливают в наклонном положении, для чего необходимо на расстоянии 8 м от петли установить козел высотой в 1,75 м. В этом положении мачта будет находиться под углом 10° к горизонту.
Для определения правильности выбора параметров силовых элементов конструкции (троса, лебедки, оси, петель и др.) необходимо знать величины сил, действующих на эти элементы конструкции во время подъема мачты. С этой целью на рис. 10 представлено два положения мачты: в первоначальный момент подъема, когда мачта наклонена к горизонту под углом 10°, и в последующий, когда мачта поднята к горизонту под углом в 60°.

Сила натяжения троса Т будет распределяться на силу, действующую вдоль мачты М, и силу П, поднимающую мачту (направлена перпендикулярно к мачте).
Указанные силы, а также сила веса отдельных элементов конструкции, измеряются килограммами. Для определения этих сил произведем следующие вычисления.

Мачта состоит из пяти труб (рис. 8, дет. 1-5), каждая из которых имеет свой вес. Определим вес каждой детали мачты. В таблице 9 в колонках 2, 3, 4 и 5 представлен подсчет веса каждой детали, входящей в мачту. Длина каждой детали мачты указана на рис. 8, а вес одного погонного метра взят из справочников.

Промышленность выпускает трубы с различной толщиной стенки, рассчитанной на работу под разным давлением: легкие, обыкновенные и усиленные. Наиболее распространенными являются обыкновенные, вес которых и использован в расчетах. Точкой приложения силы веса каждой из рассмотренных деталей является центр ее симметрии - середина детали, а направление силы - вертикально вниз.

Сумма моментов сил, приложенных в направлении по часовой стрелке, складывается из произведений силы веса деталей на расстояние (плечо) от точки приложения силы до оси вращения.

Пример 5. Деталь мачты 5 имеет длину 5 м. Вес одного метра трубы - 4,38 кг. Вес всей трубы равен 4,38 х5 = 21,9 кг.

Точка приложения веса находится в середине трубы, то есть на расстоянии 2,5 м от оси вращения. Момент, образованный силой тяжести, равен 21,9 кг х 2,5 м = 54,75 кгм.

При подъеме мачты на 10° расстояние от оси вращения стало не 2,5, а 2,4 м и момент стал 21,9 кг х 2,4 м = 52,56 кгм. При подъеме мачты на 60° расстояние от оси вращения до центра тяжести стало 1,3 м и момент стал равен 21,9 кг х 1,3 м = 28,47 кгм. Моменты, образованные этой силой, направлены по часовой стрелке.

В колонках 6 и 7 таблицы 9 имеются подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 10°, а в конце колонки 7 суммирован итог, равный 563,4 кгм.

В колонках 8 и 9 имеются аналогичные подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 60°, а в конце колонки 9 суммирован итог, равный 288,07 кгм.

Подъем мачты производят, натягивая трос. Для того чтобы мачта пришла в движение (обозначим этим начало подъема), необходимо создать такое натяжение троса, чтобы момент, образуемый весом мачты, был меньше момента, создаваемого натяжением троса.

Определим силы П, Т и М в начале подъема, то есть при наклоне мачты на угол 10°.

Учитывая, что трос закреплен на расстоянии 10 м от оси вращения, сила, которая должна создать момент, равный 565,4 кгм, должна быть приложена в месте закрепления троса, направлена против движения часовой стрелки, перпендикулярно к мачте и равна П = 563,4 кгм: 10 м = 56,3 кг.

Зная силу П по величине и направлению, а силы Т и М по направлению, с помощью графических построений можно определить величины последних сил. Точность, с которой будут определены эти силы, зависит от масштаба построения (производить его лучше на миллиметровке).

Построение графика, подобно изображенному на рис. 9, целесообразно проводить в масштабе один метр в натуре - два сантиметра на чертеже, а построения для нахождения сил Т и М в масштабе 5 кг - один сантиметр на чертеже.

Для нахождения сил Т и М необходимо отложить в масштабе силу П и из конца этой силы провести линию, параллельную осевой линии мачты, до пересечения с линией направления троса. А из точки пересечения восстановить перпендикуляр к осевой линии мачты. В полученном прямоугольнике необходимо измерить длину сил, направленных вдоль троса (Т) и вдоль мачты (М) и с учетом масштаба установить величины этих сил. В разбираемом примере сила натяжения троса Т равна 160 кг, а сила, действующая вдоль мачты М, равна 140 кг. Таким образом, сила, действующая на трос, лебедку и якорь, равна 160 кг, на ось и болты крепления петель - 140 кг. Но трос выдерживает более 1500 кг, лебедка - более 250 кг, якорь - 500 кг, а усилие среза одного болта М12 равно 1300 кг (то есть в конструкцию заложен значительный запас).


Рис. 11. Определение глубины котлована под фундамент и определение длины ног


Аналогичным образом можно определить направление и величины этих сил при подъеме мачты на 60°, однако из анализа данных таблицы 9 следует, что наибольшее натяжение троса возникает в первоначальный момент, в силу чего такой расчет не требуется.

Перед окончанием подъема во избежание удара в момент соприкосновения платформ мачту необходимо удерживать за растяжки.

Подняв мачту и не ослабляя троса, закрепляют платформу с помощью болтов (рис. 8, дет. 14). Если мачта имеет небольшой наклон, положение ее можно исправить с помощью регулировки прокладками (рис. 8, дет. 11, 15). Болты крепления при этом ослабляют, а прокладки только вынимают, после чего производят присоединение растяжек к якорям и их натяжение.

Токоотвод служит для соединения молниеприемника с заземлителями. Все соединения токоотвода должны быть сварными. Частью токоотвода будет являться мачта с платформой. К ней приваривают токоотвод, идущий от заземлителей.

Для того чтобы приварка токоотвода к узлу мачты не разрушалась во время неоднократных подъемов и опусканий последней, рядом с местом приварки должно быть сделано двойное кольцо, как это показано на рис. 10-III. Диаметр токоотвода должен быть не менее 6 мм.

Заземлитель (в соответствии с ранее приведенным расчетом) должен состоять из трех электродов диаметром 12 мм, длиной 5 м, расположенных в заземляющем устройстве в ряд на расстоянии 5 м один от другого. Для сооружения заземляющего устройства необходимо откопать траншею глубиной около метра и длиной немного более 10 м. Для более легкого погружения в грунт концы электроводов отковывают на четыре грани, подобно сапожному шилу. А если необходимо пройти через твердые грунты (например, слой известняка), нужно приварить изношенное сверло несколько большего диаметра. Погружение электрода в грунт производят несильными ударами при постоянном проворачивании. После погружения конец электрода на длине 100 мм отгибают и к нему приваривают горизонтальный соединительный стержень.


Рис. 12. Стержневой электрод заземления: 1 - стержень; 2 - забурник


Электроды также могут быть изготовлены в соответствии с рис. 12. Электроды этого типа вворачиваются в грунт с помощью забурника, приваренного к концу электрода. В процессе погружения происходит разрыхление грунта вокруг электрода, в силу чего контакт электрода с землею ухудшается.
Отличительной особенностью сооружения молниезащитного устройства на металлической крыше является то, что она используется как молниеприемник. Все выступающие элементы строения, расположенные выше металлической крыши, должны иметь собственные молниеприемники, соединенные с токоотводом.


Рис. 13. Токоприемник печной трубы: 1 - печная труба; 2 - крыша; 3 - токоприемник


Молниеприемник печной трубы представлен на рис. 13, телевизионная антенна, установленная на металлической мачте, должна иметь заземление (металлическую мачту присоединяют к токоотводу), а для предохранения радиоустройств следует устанавливать грозовые переключатели и искроразрядники. При приближении грозы следует прекратить прием и заземлить антенну. Металлическая крыша строения должна быть соединена с заземляющим устройством с помощью то-коотвода, который прокладывают по коньку крыши и крепят к ней через каждые 15 м. Крепление токоотвода к крыше дома представлено на рис. 14. Спуски токоотводов с крыши должны располагаться в таких местах, чтобы к ним не могли прикасаться люди (например, вдали от крыльца, прикрытые кустарником и т.д.).

Заземлитель, перед присоединением его к системе молниезашиты, должен быть испытан.


Рис. 14. Крепление токоотвода к металлической крыше: 1 - металлическая крыша; 2 и 3 - пластины крепления; 4 - болты


Для измерения сопротивления заземляющих устройств выпускаются специальные приборы: МС-08 и М-416. При отсутствии их можно измерить сопротивление при помощи амперметра и вольтметра. Схема измерения представлена на рис. 15.

Как следует из схемы, кроме испытуемого заземлительного устройства, обозначенного Rx, необходимо на расстоянии 40 м от него установить вспомогательный заземлитель RB и на таком же расстоянии зонд Кз- Рекомендованные расстояния нужны для исключения взаимного влияния их полей растекания. В качестве зонда можно использовать небольшой штырь. Сопротивление заземлительного устройства определяется по формуле:

Где
V - напряжение, измеренное вольтметром;
J - ток в цепи.

Точность измерения тем выше, чем больше сопротивление обмотки вольтметра в сравнении с сопротивлением зонда R3, поэтому рекомендуется применять электростатический вольтметр.


Рис. 15. Схема измерения сопротивления заземляющего устройства при помощи амперметра и вольтметра: 1 - понижающий трансформатор; 2 - вольтметр; 3 - амперметр; R3 - зонд, Rx- испытуемое заземляющее устройство, RB - вспомогательное заземляющее устройство

Похожие публикации