Интернет-журнал дачника. Сад и огород своими руками

Ni какой элемент. Применение никеля в быту, строительстве и других отраслях. Что такое никель

Взаимодействия никеля в организме

Главный источник поступления никеля в человеческий организм – это еда и вода. Из пищи усваивается до 10% никеля, из воды он всасывается быстрее и полнее - абсорбция вещества увеличивается до 25%. Соляная кислота уже в желудке начинает воздействовать на никель, способствуя его всасыванию в кровь, остатки вещества усваиваются в тонком кишечнике. Далее никель вступает в соединения с сывороточными белками плазмы крови (альфа1-гликопотеином, никелоплазмином и др.) и разносится кровью к органам. Практически весь остаточный никель выводится через кишечник с фекалиями, только 5% остатков никеля удаляются с мочой и с желчью.

Несмотря на малую химическую активность никеля, у него есть довольно активные реакции взаимодействия в организме, которые полезно учитывать для контроля усвоения этого вещества. В присутствии витамина В12 никель стимулирует сократимость и рост мышечных волокон (а если этого витамина в организме мало, никель, наоборот, снижает мышечный тонус. Наличие витамина С ухудшает усвоение никеля. За счет влияния на выведение избыточных стероидных гормонов никель предположительно предупреждает задержку натрия и воды, избавляя от отеков, а также сохраняет кальций в костной ткани, не позволяя развиться остеопорозу. Если организм испытывает дефицит железа, место этого элемента замещают молекулы никеля. Всасывание никеля усиливается во время беременности и грудного вскармливания, что объясняется необходимостью этого химического элемента для синтеза гормонов, отвечающих за вынашивание и лактацию.

Ухудшают усвоение никеля цинк , селен , сера в продуктах и биоактивных добавках. Вместе с медью и кобальтом никель принимает участие в синтезе эритроцитов и других элементов крови.

Основные функции в организме


В человеческом организме никель концентрируется в основном в гипофизе, поджелудочной железе и надпочечниках – важнейших железах эндокринной системы, которые вырабатывают эндорфин, гормон роста, а также другие гормоны, выполняющие следующие функции:

  • отвечают за вынашивание и вскармливание ребенка;
  • стимулируют выработку меланина – пигмента кожи, защищающего ее от УФ-облучения;
  • активизируют работу щитовидной железы;
  • улучшают сократительные способности мышц;
  • помогают в выработке инсулина.

Роль никеля в гормонообразующей деятельности эндокринной системы пока изучается, однако есть данные о том, что никель успокаивает нервную систему, снижая активность адреналина. Благодаря никелю усиливается выработка почками гормона эритропоэтина, отвечающего за выработку красных кровяных телец эритроцитов, за снабжение кислородом всех тканей. Подтверждена роль никеля в регулировании накопления и выведения мочи, выработанных надпочечниками избыточных стероидных гормонов. Благодаря этому снижается артериальное давление, регулируется уровень глюкозы в крови, ускоряется регенерация тканей в организме.

Еще один орган депонирования никеля – печень, и здесь элемент принимает участие в синтезе важнейших для организма аминокислот, которые входят в структуру клеточных ДНК и РНК, укрепляют иммунитет, улучшают работу сердца и сосудов, борются с воспалениями и ускоряют восстановление тканей после них, контролируют массу тела, предотвращают неконтролируемое деление клеток.

Никель участвует в реакциях окисления и восстановления разных органических соединений, важных для работы организма, необходим для выработки некоторых ферментов, без которых не усваиваются витамины, жиры и углеводы.

Польза никеля для организма

Польза никеля для организма плохо изучена, но поскольку он активно влияет на ряд важнейших процессов в органах и системах, можно указать на следующие его полезные свойства:

  • уменьшает проявление артериальной гипертензии;
  • регулирует обмен жиров и углеводов, влияет на уменьшение массы тела;
  • снимает нервное возбуждение;
  • повышает гемоглобин крови;
  • улучшает усвоение инсулина;
  • повышает иммунитет;
  • укрепляет сердечно-сосудистую систему.

Препараты с содержанием никеля активно применяются в трихологии – этот элемент усиливает кровоток в области волосяных фолликулов и улучшает снабжение их кислородом, что помогает уменьшить выпадение волос.

Роль в возникновении и течении различных заболеваний

Доказано влияние никеля на активацию инсулина. Если при сахарном диабете вводить это вещество сразу после инсулина, то значительно усиливается гипогликемическая активность препарата, и его можно принимать реже. У пожилых людей никель начинает накапливаться в легких, и, учитывая вероятную связь этого вещества с гормональной активностью организма, ученые предполагают влияние никеля на возрастную активность легочных гормонов, способных усилить проявления бронхиальной астмы.

Избыточное накопление никеля в организме провоцирует депигментацию кожи – витилиго. Влияние никеля на выработку гистамина в организме сделало этот металл одним из наиболее известных аллергенов: около 15% людей в мире страдают аллергией на никелевые соединения, из которых делают украшения, часы, застежки и заклепки для одежды – это проявляется раздражением и зудящей сыпью на коже.

В каких продуктах содержится никель


Четвертая часть никеля, попадающего в наш организм ежедневно, приходится на водопроводную воду. Особенно много этого химического элемента содержит вода по утрам, когда она долго простояла в трубопроводе. Чемпионами по содержанию никеля считается порошок какао (980 мкг/100 г веса продукта), горький шоколад (260 мкг) и молочный шоколад (120 мкг). Причинами такого высокого содержания никеля в этих продуктах считают использование аппаратуры и емкостей с никелевым покрытием для хранения и переработки шоколадного сырья.

Никель в некоторых продуктах (мкг на 100 г)

Крупы Бобовые, орехи Мясо, рыба Овощи, фрукты
Кукурузная крупа 80 Кешью 510 Говяжья печень 63 Шпинат 390
Овсяные хлопья 50 Соя 304 Ставрида копченая 28 Абрикосы 32
Рис 50 Зеленый горошек 250 Шпроты в масле 14 Груша 18
Пшеница 40 Фасоль 170 Свинина 12 Виноград 16
Рожь 30 Чечевица 160 Треска 9 Капуста белокочанная 15
Перловка 20 Фисташки 40 Говядина 8 Помидоры 13

Совет врача. Тем, кто придерживается диеты на растительных белках, нужно рационально распределять в своем меню богатые белком бобовые и крупяные продукты, чтобы не получить передозировку никеля

Страдающим аллергией на никель нужно постараться иметь в рационе как можно меньше продуктов с высоким содержанием никеля.

Как сохранить никель в пище

Продукты с высоким содержанием никеля (крупы, бобовые) не следует хранить в открытом виде под прямыми солнечными лучами, потому что металл может сформировать различные оксиды, способные накапливаться в организме. С другой стороны, нельзя хранить продукты в посуде с никелированным покрытием больше двух дней – возрастает риск перехода никеля в еду и избыточного накопления минерала в органах и тканях.

Усвояемость минерала

Аллергикам надо помнить и о том, что в напитках с кофеином и в пиве содержится никель, который плохо усваивается и может спровоцировать обострение кожных раздражений.

Всасывание никеля значительно ухудшается, если вместе с содержащими его продуктами пить чай, кофе, молоко, апельсиновый сок, дополнять еду фруктово-ягодными десертами из цитрусовых, киви, черной смородины и других продуктов, в которых много аскорбиновой кислоты.

Сочетание с другими питательными веществами

Никель легко вступает в связь с белками и органическими кислотами (лимонной, яблочной, уксусной и др.), помогая их усвоению. Важно сочетание никеля с продуктами, которые богаты жирами и углеводами. Без никеля не происходит расщепление поступивших с питательными веществами жиров на удобные для всасывания жирные кислоты и глицерин, не высвобождается нужная организму энергия из углеводов.

Суточные нормы никеля


Биологическая роль никеля в организме человека пока не определена точно, поэтому нет научно обоснованных норм потребления этого металла, а потребности в нем обосновываются большей частью на основании наблюдений. Суточная норма никеля для человека определена в диапазоне от 100 до 300 мкг. С продуктами и водой мы получаем каждый день около 600 мкг никеля, но усваиваем не более четверти из поступившего количества, поэтому при сбалансированном рационе недостаток или избыток этого вещества – редкое явление.

Причины и последствия дефицита никеля

Если организм получает в день менее 50 мкг никеля, может развиться дефицитное состояние. Причиной недостатка никеля, помимо неполноценного питания (например, диеты на основе только фруктов или соков, гречки или кофе) могут стать некоторые заболевания желудка и кишечника, нарушающие всасывание никеля, сильная анемия, сердечные болезни.

Совет врача. При синдроме хронической усталости, при физических и умственных перенапряжениях, после перенесенных инфекционных болезней организм нуждается в повышенном поступлении никеля с продуктами питания

Дополнить рацион никелем нужно, посоветовавшись с врачом, при артериальной гипертензии, сахарном диабете, некоторых дерматологических заболеваниях. Особенно осмотрительно следует относиться к никелю беременным и кормящим женщинам. С одной стороны – никель способствует вынашиванию малыша и влияет на лактацию, с другой – это токсичный элемент, поэтому любые биодобавки, витаминные комплексы и даже изменения меню в пользу продуктов, богатых никелем, должны обязательно обсуждаться с врачом.

Признаками недостатка никеля становится мышечная слабость и общая вялость, отсутствие желания двигаться. Снижается сопротивляемость организма вирусам и бактериям, инфекционные заболевания развиваются часто, протекают долго и тяжело. Если долго не принимать меры, сильно снизится уровень гемоглобина, повысится сахар в крови, нарушится сердечная деятельность, разовьются патологии печени, проявятся дерматозы.

Избыток никеля в организме

Избыточное накопление никеля в организме случается гораздо чаще дефицитных состояний, причем происходит из-за воздействия совокупности причин:

  • постоянного пользования никелированной посудой и хранения в ней еды;
  • употребления большого количества продуктов, богатых никелем;
  • повышенное содержание никеля в овощах и фруктах из-за их выращивания на загрязненных этим элементом почвах и водах;
  • высокое содержание никеля в водопроводной воде;
  • злоупотребление консервами (в них много никеля от баночного металла);
  • ношение украшений, часов из никелевых сплавов;
  • некачественные зубные протезы или брекет-системы с выделяющимся из них никелем;
  • вдыхание табачного дыма, выхлопных газов;
  • злоупотребление электронными сигаретами.

Передозировку никеля можно получить, вдыхая пары или пыль с соединениями этого элемента в условиях промышленного производства, при работе с медицинскими препаратами, поскольку никель способен накапливаться в организме. Наиболее опасны сульфат и хлорид никеля – эти соединения растворяются в воде и быстро всасываются.

Оксалаты, силикаты и фосфаты никеля в воде не растворимы и потому менее токсичны.

Острое отравление из-за избытка никеля можно получить при попадании в организм разовой дозы вещества более 50 мг. В этом случае появляются боли в правом подреберье, одышка, тошнота и головные боли.

Важно! Высокий уровень никеля в крови при лабораторном анализе может быть первым признаком развивающегося инфаркта миокарда

Хроническая интоксикация никелем проявляется:

  • кожными воспалениями – кератитом, контактным дерматитом;
  • язвочками на роговице глаз;
  • часто возникающими носовыми кровотечениями;
  • ринитами, болезнями дыхательных путей;
  • нервными расстройствами, раздражительностью и возбудимостью;
  • сбоями сердечного ритма;
  • проблемами с пищеварением.

В запущенных формах избыток никеля грозит отеками мозга и легких, жировой дистрофией печени, почечной недостаточностью, развитием рака легких, желудка.

Первой помощью при остром отравлении никелем может стать введение унитиола (дитиолпропансульфоната натрия), который прочно связывает и выводит никель. По показаниям применяют симптоматическую терапию и исключают из рациона продукты с никелем.

Препараты, содержащие минерал

При невозможности восполнить недостаток никеля из рациона врач может порекомендовать биодобавки или витаминные комплексы с содержанием никеля (например, Витальгин, Витрум). Обычно таблетки или капсулы препарата принимают раз в день во время еды, но продолжительность приема и дозировка обязательно выбираются врачом, поскольку никель – токсичный металл с неприятными побочными эффектами.

Подробности Категория: Просмотров: 5017

НИКЕЛЬ , Ni, химический элемент VIII группы периодической системы, принадлежащий к триаде т. н. железных металлов (Fe, Со, Ni). Атомный вес 58,69 (известны 2 изотопа с атомным весом 58 и 60); порядковый номер 28; обычная валентность Ni равна 2, реже - 4, 6 и 8. В земной коре никель более распространен, чем кобальт, составляя около 0,02% ее по весу. В свободном состоянии никель встречается только в метеорном железе (иногда до 30%); в геологических образованиях он содержится исключительно в виде соединений - кислородных, сернистых, мышьяковистых, силикатов и т. п. (см. Никелевые руды).

Свойства никеля . Чистый никель - серебристо-белый металл с сильным блеском, не тускнеющим на воздухе. Он тверд, тугоплавок и легко полируется; при отсутствии примесей, (особенно серы) он весьма гибок, ковок и тягуч, способен развальцовываться в очень тонкие листы и вытягиваться в проволоку диаметром менее 0,5 мм. Кристаллическая форма никеля - куб. Удельный вес 8,9; литые изделия имеют удельный вес ~8,5; прокаткой он м. б. увеличен до 9,2. Твердость по Мосу ~5, по Бринеллю 70. Предельное сопротивление на разрыв 45-50 кг/мм 2 , при удлинении 25-45%; модуль Юнга Е 20 = (2,0-2,2)х10 6 кг)см 2 ; модуль сдвига 0,78·10 6 кг/см 2 ; коэффициент Пуассона μ =0,3; сжимаемость 0,52·10 -6 см 2 /кг; температура плавления никеля по позднейшим наиболее точным определениям равна 1455°С; температура кипения - в пределах 2900-3075°С.

Линейный коэффициент термического расширения 0,0000128 (при 20°С). Теплоемкость: удельная 0,106 cal/г, атомная 6,24 cal (при 18°С); теплота плавления 58,1 cal/г; теплопроводность 0,14 cal см/см 2 сек. °С (при 18°С). Скорость звукопередачи 4973,4 м/сек. Удельное электрическое сопротивление никеля при 20°С равно 6,9-10 -6 Ω-см с температурным коэффициентом (6,2-6,7)·10 -3 . Никель принадлежит к группе ферромагнитных веществ, но магнитные свойства его уступают таковым железа и кобальта; для никеля при 18°С предел намагничения J m = 479 (для железа J m = 1706); точка Кюри 357,6°С; магнитная проницаемость как самого никеля, так и его ферросплавов значительна (см. ниже). При обыкновенной температуре никель вполне устойчив по отношению к атмосферным влияниям; вода и щелочи, даже при нагревании, на него не действуют. Никель легко растворяется в разбавленной азотной кислоте с выделением водорода и значительно труднее - в НСl, H 2 SO 4 и концентрированная HNО 3 . Будучи накален на воздухе, никель окисляется с поверхности, но лишь на незначительную глубину; в нагретом состоянии он легко соединяется с галоидами, серой, фосфором и мышьяком. Рыночными сортами металлического никеля являются следующие: а) обыкновенный металлургический никель, получаемый восстановлением из его окислов при помощи угля, содержит обычно от 1,0 до 1,5% примесей; б) ковкий никель, получаемый из предыдущего переплавлением с добавкой около 0,5% магния или марганца, содержит примесь Mg или Мn и почти не содержит серы; в) никель, приготовленный по способу Монда (через никелькарбонил) - наиболее чистый продукт (99,8-99,9% Ni). Обычными примесями в металлургическом никеле являются: кобальт (до 0,5%), железо, медь, углерод, кремний, окислы никеля, сера и окклюдированные газы. Все эти вещества, за исключением серы, мало влияют на технические свойства никеля, понижая лишь его электропроводность и несколько повышая твердость. Сера (присутствующая в форме сульфида никеля) резко уменьшает ковкость и механическую прочность никеля, особенно при повышенной температуре, что замечается даже при содержании <0,005% S. Вредное влияние серы объясняется тем, что сульфид никеля, растворяясь в металле, дает хрупкий и низкоплавкий (температура плавления около 640°С) твердый раствор, образующий прослойки между кристаллитами чистого никеля.

Применение никеля . Основная масса металлургического никеля идет на изготовление ферроникеля и никелевой стали. Крупным потребителем никеля является также производство различных специальных сплавов (см. ниже) для электропромышленности, машиностроения и химического аппаратуростроения; эта область применения никеля за последние годы показывает тенденцию к усиленному росту. Из ковкого никеля готовят лабораторные аппараты и посуду (тигли, чашки), кухонную и столовую посуду. Большие количества никеля расходуются для никелирования железных, стальных и медных изделий и в производстве электрических аккумуляторов. Из химически чистого никеля изготовляются ламповые электроды для радиотехнической аппаратуры. Наконец восстановленный чистый никель в виде порошка является наиболее употребительным катализатором при всевозможных реакциях гидрирования (и дегидрирования), например, при гидрогенизации жиров, ароматических углеводородов, карбонильных соединений и т. д.

Никелевые сплавы . Качественный и количественный состав применяемых никелевых сплавов весьма разнообразен. Техническое значение имеют сплавы никеля с медью, железом и хромом (в самое последнее время также с алюминием), - часто с добавкой третьего металла (цинка, молибдена, вольфрама, марганца и др.) и с определенным содержанием углерода или кремния. Содержание никеля в этих сплавах варьирует от 1,5 до 85%.

Сплавы Ni-Cu образуют твердый раствор при любом соотношении компонентов. Они стойки по отношению к щелочам, разбавленной H 2 SО 4 и нагреву до 800°С; антикоррозионные свойства их растут с увеличением содержания Ni. Из сплава 85% Cu+15% Ni изготовляются оболочки для пуль, из сплава 75% Си + 25% Ni - мелкая разменная монета. Сплавы с 20-40% Ni служат для изготовления труб в конденсационных установках; такие же сплавы употребляются для облицовки столов в кухнях и буфетах и для изготовления штампованных орнаментальных украшений. Сплавы с 30-45% Ni идут на производство реостатной проволоки и стандартных электрических сопротивлений; сюда относятся например, никелин и константан. Сплавы Ni-Cu с высоким содержанием Ni (до 70%) отличаются большой химической устойчивостью и широко применяются в аппарато- и машиностроении. Наибольшим распространением пользуется монель-металл.

Сплавы Ni-Cu-Zn достаточно стойки по отношению к органическим кислотам (уксусной, винной, молочной); при содержании около 50% меди они объединяются под общим названием нейзильбера . Более богатый медью аппаратурный сплав амбарак содержит 20% Ni, 75% Сu и 5% Zn; по устойчивости он уступает монель-металлу. Сплавы типа бронзы или латуни, содержащие в своем составе никель, называют иногда также никелевой бронзой.

Сплавы Ni-Cu-Mn , содержащие 2-12% Ni, под названием манганина употребляются для электрических сопротивлений; в электроизмерительных приборах применяется сплав из 45-55% Ni, 15-40% Мn и 5-40% Сu.

Сплавы Ni-Cu-Сг стойки по отношению к щелочам и кислотам, за исключением НСl.

Сплавы Ni-Cu-W за последнее время получили большое значение как ценные кислотоупорные материалы для химической аппаратуры; при содержании 2-10% W и не свыше 45% Сuони хорошо вальцуются и весьма устойчивы к горячей H 2 SO 4 . Наилучшими качествами обладает сплав состава: 52% Ni, 43% Сu, 5% W; допустима небольшая примесь Fe.

Сплавы Ni-Cr . Хром растворяется в никеле до 60%, никель в хроме до 7%; в сплавах промежуточного состава имеются кристаллические решетки обоих типов. Эти сплавы стойки по отношению к влажному воздуху, щелочам, разбавленным кислотам и к H 2 SО 4 ; при содержании 25% Сг и более, они устойчивы и против HNO 3 ; добавка ~2% Ag делает их легко вальцующимися. При 30% никеля сплав Ni-Cr вполне лишен магнитных свойств. Сплав, содержащий 80-85% Ni и 15-20% Сг, наряду с высоким электрическим сопротивлением весьма устойчив к окислению при высоких температурах (выдерживает нагревание до 1200°С); он применяется в электрических печах сопротивления и хозяйственных нагревательных приборах (электрические утюги, жаровни, плиты). В США из Ni-Cr изготовляются литые трубы для высоких давлений, применяемые в заводской аппаратуре.

Сплавы Ni-Mo обладают высокой кислотоупорностью (при >15% Мо), но не получили распространения вследствие их дороговизны.

Сплавы Ni-Mn (с 1,5-5,0% Мn) стойки по отношению к щелочам и влаге; техническое применение их ограничено.

Сплавы Ni-Fe образуют непрерывный ряд твердых растворов; они составляют обширную и технически важную группу; в зависимости от содержания углерода они носят характер либо стали, либо чугуна. Обычные сорта никелевой стали (перлитовой структуры) содержат 1,5-8% Ni и 0,05- 0,50% С. Присадка никеля делает сталь очень вязкой и значительно повышает ее предел упругости и ударное сопротивление на изгиб, не нарушая ковкости и свариваемости. Из никелевой стали готовят ответственные детали машин, например передаточные валы, оси, шпиндели, цапфы, зубчатые сцепления и т. п., а также многие детали артиллерийских конструкций; сталь с 4-8% Ni и <0,15% С хорошо поддается цементации. Введение никеля в чугуны(>1,7% С) способствует выделению углерода (графита) и разрушению цементита; никель повышает твердость чугуна, его сопротивление на растяжение и изгиб, способствует равномерному распределению твердости в отливках, облегчает механическую обработку, придает мелкозернистость и уменьшает образование пустот в литье. Никелистый чугун применяется как щелочеупорный материал для химической аппаратуры; наиболее пригодны для этой цели чугуны с содержанием 10-12% Ni и ~1 % Si. Сталеподобные сплавы с более высоким содержанием никеля (25-46% Ni при 0,1-0,8% С) имеют аустенитовую структуру; они очень стойки к окислению, к действию горячих газов, щелочей и уксусной кислоты, обладают высоким электрическим сопротивлением и весьма малым коэффициентом расширения. Эти сплавы почти не магнитны; при содержании Ni в пределах 25-30% они вполне утрачивают магнитные свойства; магнитная проницаемость их (в полях низкой напряженности) растет с увеличением содержания никеля и м. б. еще повышена специальной термической обработкой. К сплавам этой категории относятся: а) ферроникель (25% Ni при 0,3-0,5% С), идущий на изготовление клапанов моторов и других машинных частей, работающих при повышенной температуре, а также немагнитных частей электрических машин и реостатной проволоки; б) инвар ; в) платинит (46% Ni при 0,15% С) применяется в электролампах вместо платины для впаивания проводов в стекло. Сплав пермаллой (78% Ni при 0,04% С) имеет магнитную проницаемость μ = 90000 (в поле напряженностью 0,06 гаусса); предел намагничения I m = 710. Некоторые сплавы этого типа идут на изготовление подводных электрических кабелей.

Сплавы Ni-Fe-Cr - также очень важная в техническом отношении группа. Хромоникелевая сталь , употребляемая в машино- и моторостроении, содержит обычно 1,2-4,2% Ni, 0,3-2,0% Сг и 0,12-0,33% С. Кроме высокой вязкости она обладает и значительной твердостью и сопротивляемостью износу; временное сопротивление на разрыв, в зависимости от характера термической обработки, колеблется между 50 и 200 кг/мм 2 ; идет на изготовление коленчатых валов и других деталей двигателей внутреннего сгорания, частей станков и машин, а также артиллерийской брони. В сталь для лопаток паровых турбин, с целью повышения твердости, вводится большое количество хрома (от 10 до 14%). Хромоникелевые стали с содержанием >25% Ni хорошо противостоят действию горячих газов и обладают минимальной текучестью: они могут подвергаться значительным усилиям в условиях высокой температуры (300-400°С), не обнаруживая остаточных деформаций; употребляются для изготовления клапанов к моторам, частей газовых турбин и конвейеров для высокотемпературных установок (например, печей для отжига стекла). Сплавы Ni-Fe-Cr, содержащие >60% Ni, служат для изготовления литых машинных деталей и низкотемпературных частей электрических нагревательных приборов. Как аппаратурный материал, сплавы Ni-Fe-Cr обладают высокими антикоррозионными свойствами и довольно устойчивы по отношению к HNО 3 . В химическом аппаратостроении пользуются хромоникелевой сталью, содержащей 2,5-9,5% Ni и 14-23% Сг при 0,1-0,4% С; она почти не магнитна, устойчива к HNО 3 , горячему аммиаку и к окислению при высоких температурах; присадка Мо или Сu повышает стойкость к горячим кислотным газам (SО 2 , НСl); повышение содержания Ni увеличивает способность стали к механической обработке и стойкости к H 2 SO 4 , но уменьшает стойкость к HNO 3 . Сюда относятся крупповские нержавеющие стали (V1M,V5M) и кислотоупорные стали (V2A, V2H и др.); термическая обработка их заключается в нагреве до ~ 1170°С и закалке в воде. В качестве щелочеупорного материала применяют никель-хромистый чугун (5-6% Ni и 5-6% Сг при содержании >1,7% С). Сплав нихром, содержащий 54-80% Ni, 10-22% Сг и 5-27% Fe, иногда с добавкой Сu и Мn, устойчив к окислению в пределах температур до 800°С и находит применение в нагревательных приборах (этим же названием иногда обозначают описанные выше сплавы Ni-Cr, не содержащие Fe).

Сплавы Ni-Fe-Mo предлагались как аппаратурный материал. Наивысшей кислотоупорностью и антикоррозионными свойствами обладает сплав из 55-60% Ni, 20% Fe и 20% Мо, при содержании < 0,2% С; присадка небольшого количества V еще более повышает кислотоупорность; Мn м. б. вводим в количестве до 3%. Сплав вполне устойчив по отношению к холодным кислотам (НСl, H 2 SO 4), за исключением HNO 3 , и к щелочам, но разрушается хлором и окислителями в присутствии кислот; он имеет твердость по Бринеллю >200, хорошо вальцуется, куется, отливается и обрабатывается на станках.

Сплавы Ni-Fe-Cu применяются в химической аппаратуре (сталь с 6-11% Ni и 16-20% Сu).

Сплавы Ni-Fe-Si . Для постройки кислотоупорной аппаратуры применяются кремненикелевые стали марки «дуримет» (Durimet), содержащие 20-25% Ni (или Ni и Сг в отношении 3:1) и ~ 5% Si, иногда с добавкой Сu. Они устойчивы к холодным и горячим кислотам (H 2 SО 4 , HNO 3 , СН 3 ·СООН) и соляным растворам, менее устойчивы к НСl; хорошо поддаются горячей и холодной механической обработке.

В сплавах Ni-AI имеет место образование химического соединения AINi, растворяющегося в избытке одного из компонентов сплава.

Техническое значение начинают приобретать сплавы, основой которых является система Ni-AI-Si . Они оказались весьма стойкими по отношению к HNО 3 и к холодной и горячей H 2 SО 4 , но механической обработке почти не поддаются. Таков, например, новый кислотоупорный сплав для литых изделий, содержащий около 85% Ni, 10% Si и 5% Аl (или Аl + Сu); его твердость по Бринеллю около 360 (отжигом при 1050°С снижается до 300).

Металлургия никеля . Главной областью применения никеля является производство специальных сортов стали. Во время войны 1914-18 гг. для этой цели расходовалось не менее 75% всего никеля; в нормальных же условиях ~65%. Никель широко применяется также в сплавах его с нежелезными (цветными) металлами, гл. обр. с медью (~ 15%). Остальное количество никеля идет: на изготовление никелевых анодов - 5%, ковкого никеля - 5% и разных изделий - 10%.

Центры производства никеля неоднократно перемещались из одних местностей земного шара в другие, что объяснялось наличием благонадежных рудных месторождений и общей экономической конъюнктурой. Промышленная выплавка никеля из руд началась в 1825-26 г. в Фалуне (Швеция), где был найден никель, содержащий серный колчедан. В 90-х годах прошлого века шведские месторождения оказались по-видимому практически исчерпанными. Лишь во время войны 1914-18 гг., в связи с повышением спроса на металлический никель, Швеция давала несколько десятков тонн этого металла (максимум 49 т в 1917 г.). В Норвегии производство началось в 1847-50 гг.

Главной рудой здесь являлись пирротины с содержанием в среднем 0,9-1,5% Ni. Производство в Норвегии в небольших размерах (максимум - около 700 т в год во время войны 1914-18 гг.) существует и по настоящее время. В середине прошлого века центр никелевой промышленности сосредоточился в Германии и Австро-Венгрии. Сначала она базировалась здесь исключительно на мышьяковистых рудах Шварцвальда и Гладбаха, а с 1901 года, и в особенности во время войны 1914-18 гг., на окисленных рудах Силезии (Франкенштейн). Разработка месторождений никелевых руд в Новой Каледонии началась в 1877 г. Благодаря использованию этих руд мировое производство никеля в 1882 г. достигло почти 1000 т. Добытая здесь руда перерабатывалась на месте лишь в ограниченных количествах, главная же ее масса отправлялась в Европу. Лишь в последние годы, вследствие повышенных транспортных тарифов, в Европу импортируются гл. обр. богатые штейны, содержащие 75-78% Ni, в количестве никеля около 5000 т в год. В настоящее время предположено получать металлический никель в Новой Каледонии, для чего обществом «Никель» сооружается рафинировочный завод, который будет пользоваться электрической энергией гидростанции на реке Ятэ. Никелевая промышленность в Канаде (Северная Америка) возникла в конце 80-х гг. прошлого столетия. До последнего времени здесь существовали две фирмы; одна английская - Mond Nickel Со. и другая американская - International Nickel Со. В конце 1928 года обе фирмы объединились в мощный мировой трест под названием International Nickel Company of Canada, поставляющий на рынок около 90% мировой производительности никеля и эксплуатирующий месторождения, расположенные вблизи г. Седбюри. Фирма Mond Nickel Со. проплавляет свои руды на заводе в Конистоне на штейн, который для дальнейшей переработки отправляется в Англию на завод в Клейдаке. Фирма International Nickel Со. выплавленный на заводе в Конперклифе штейн отправляет для получения металла на завод в Порт- Кольборн. Мировое производство никеля в последние годы достигает 40000 т.

Переработка никелевых руд производится исключительно сухим путем. Гидрометаллургические способы, неоднократно рекомендовавшиеся для переработки руд, не нашли пока применения в практике. Эти способы в настоящее время иногда применяются лишь к переработке промежуточных продуктов (штейнов), получаемых в результате переработки руд сухим путем. Применение сухого пути к переработке никелевых руд (как сернистых, так и окисленных) характеризуется осуществлением одного и того же принципа постепенной концентрации ценных составляющих руды, в виде тех или иных продуктов, которые уже затем перерабатываются на металлы, подлежащие извлечению. Первая стадия такой концентрации пенных составляющих никелевый руд осуществляется рудной плавкой на штейн. В случае сернистых руд, последние плавятся в сыром или в предварительно обожженном состоянии в шахтных или пламенных печах. Окисленные руды плавятся и шахтных печах с добавкой в их шихту серу содержащих материалов. Штейн рудной плавки, роштейн , оказывается не пригодным для его непосредственной переработки на содержащиеся в нем ценные металлы, благодаря их сравнительно незначительной концентрации в этом продукте. В виду этого штейн рудной плавки подвергается дальнейшей концентрации или путем обжига его с последующей плавкой в шахтной печи, или путем окислительной плавки на поду пламенной печи, или в конвертере. Эти сократительные, или концентрационные, штейновые плавки, производимые на практике одно- или многократно, конечной своей целью имеют получение чистого наиболее концентрированного штейна (файнштейна ), состоящего лишь из сульфидов ценных металлов с некоторым количеством последних, находящихся в свободном состоянии. Файнштейны, получаемые на практике, бывают двух родов в зависимости от их состава. При переработке окисленных новокаледонских руд, не содержащих в себе других кроме никеля ценных металлов, файнштейн представляет сплав сульфида никеля (Ni 3 S 2) с некоторым количеством металлического никеля. В результате же переработки сернистых канадских руд, содержащих и никель и медь, получаемый файнштейн представляет сплав сульфидов меди и никеля с некоторым количеством этих металлов в свободном состоянии. В зависимости от состава файнштейна меняется и их переработка на чистые металлы. Наиболее простой является переработка файнштейна, содержащего один только никель; переработка медно-никелевого файнштейна сложнее и м.б. осуществлена различными путями. Переработка окисленных руд на штейн с серосодержащими добавками (гипсом) была предложена Гарниери в 1874 г. Переработка этих руд во Франкенштейне (Германия) производилась следующим образом. К рудной смеси, содержавшей 4,75 % Ni, прибавлялось 10% гипса или 7% ангидрита и 20% известняка; сюда же прибавлялось и некоторое количество плавикового шпата. Вся эта смесь тщательно перемешивалась, измалывалась и затем прессовалась в кирпичи, которые после высушивания проплавлялись в шахтной печи расходом кокса в 28-30% от веса руды. Суточная производительность шахтной печи доходила до25т руды. Сечение печи на уровне фурм равно 1,75 м 2 ; высота ее 5 м. Нижняя часть шахты на высоту 2 м имела ватер-жакеты. Шлаки сильно кислые; в них терялось 15% Ni. Состав роштейна: 30-31% Ni; 48-50% Fe и 14-15% S. Роштейн гранулировался, дробился, обжигался и переплавлялся в вагранке в смеси с 20% кварца и при расходе кокса в 12-14% от веса обожженного роштейна на концентрированный штейн следующего среднего состава: 65% Ni, 15% Fe и 20% S. Последний конвертировался на файнштейн: 77,75% Ni, 21% S, 0,25-0,30% Fe и 0,15-0,20% Сu. Тщательно измельченный файнштейн подвергается обжигу в пламенных печах (с ручным перегребанием или механическим) до полного удаления серы. В конце обжига к обжигаемой массе прибавляют некоторое количество NaNО 3 и Na 2 CО 3 не только для того, чтобы облегчить выгорание серы, но и для того, чтобы присутствующие иногда в штейне As и Sb перевести в сурьмяно- и мышьяковокислые соли, которые затем выщелачиваются водою из обожженного продукта. Полученная в результате обжига NiO подвергается восстановлению, для чего закись никеля смешивается с мукой и водой и из полученного теста формуют кубики, которые затем нагревают в тиглях или ретортах. Под конец восстановления температура поднимается до 1250°С, что способствует свариванию отдельных восстановленных частиц Ni в сплошную массу.

Фирма International Nickel Со. перерабатывает свои сернистые руды след. обр. Рудная плавка в зависимости от их крупности ведется либо в шахтных либо в пламенных печах. Кусковые руды подвергаются предварительному обжигу в кучах; продолжительность обжига от 8 до 10 месяцев. Обожженная руда плавится в смеси с некоторым количеством необожженной руды в шахтных печах. Флюсов не добавляется, т. к. руда самофлюсующаяся. Расход кокса 10,5% от веса рудной смеси. В сутки проплавляется в печи около 500 т руды. Штейн рудной плавки подвергается конвертированию на файнштейн. Конвертерный шлак частью возвращается в конвертер, частью идет в шихту рудной плавки. Состав руд и продуктов приведен в табл.:

Мелкая руда подвергается обжигу в Веджа печах до содержания серы в 10-11% и затем плавке в пламенной печи. Конвертерный шлак, содержащий 79,5% (Сu + Ni), 20% S и 0,30% Fe, перерабатывается процессом Орфорда, состоящим в переплавке файнштейна в присутствии Na 2 S. Последний вызывает расслаивание продуктов плавки на два слоя: верхний, представляющий сплав Cu 2 S + Na 2 S, и нижний, содержащий почти чистый сульфид никеля. Каждый из этих слоев перерабатывается на соответствующий металл. Верхний, медьсодержащий, слой по отделении от него Na 2 S подвергается конвертированию, а нижний, никелевый, слой подвергается хлорирующему обжигу, выщелачиванию (причем он освобождается от некоторого содержащегося в нем количества меди), и полученная т. о. закись никеля восстанавливается. Некоторое количество медно-никелевого файнштейна подвергается окислительному обжигу и последующей восстановительной плавке на медно-никелевый сплав, известный под названием Монель-металла.

Фирма Mond Nickel Со. свои руды обогащает; полученные концентраты подвергаются спекающему обжигу на машинах Dwight- Lloyd’a, агломерат с которых идет в шахтную печь. Штейн рудной плавки подвергается конвертированию, полученный файнштейн перерабатывается способом Mond ’а, для чего файнштейн дробится, обжигается и выщелачивается H 2 SО 4 для удаления большей части меди в виде CuSО 4 . Остаток, содержащий NiO с некоторым количеством меди, высушивается и поступает в аппарат, где он восстанавливается при 300°С водородом (водяной газ). Восстановленный, мелко раздробленный никель поступает в следующий аппарат, где он приводится в соприкосновение с СО; при этом образуется летучий карбонат никеля - Ni(CO) 4 , который переводится в третий аппарат, где поддерживается температура 150°С. При этой температуре Ni(CO) 4 разлагается на металлический Ni и СО. Получающийся этим путем металлический никель содержит 99,80% Ni.

Помимо указанных двух способов получения никеля из медно-никелевого файнштейна существует еще способ Hybinette, дающий возможность получать никель электролитическим путем. Электролитический никель содержит: 98,25% Ni; 0,75% Со; 0,03% Сu; 0,50% Fe; 0,10% С и 0,20% Рb.

Вопрос о производстве никеля в СССР имеет столетнюю историю. Уже в 20-х годах прошлого века были известны никелевые руды на Урале; одно время уральские месторождения никелевых руд, содержащие около 2% Ni, рассматривались как один из главных источников сырья для мировой никелевой промышленности. После открытия никелевых руд на Урале М. Даниловым, П. А. Демидовым и Г. М. Пермикиным был произведен целый ряд опытов по их переработке. В Ревдинске за 1873-77 гг. было получено 57,3 т металлического никеля. Но дальнейшее разрешение поставленной задачи было прекращено после открытия более богатых и мощных месторождений никелевых руд в Новой Каледонии. Вопрос об отечественном никеле был снова поставлен на разрешение под влиянием обстоятельств, вызванных войной 1914-18 гг. Летом 1915 года на Уфалейском заводе были произведены П. М. Бутыриным и В. Е. Васильевым опыты выплавки штейна в пламенной печи. В это же время велись опыты по извлечению никеля из Уфалейских руд в петербургском Политехническом институте Г. А. Кащенко под руководством проф. А. А. Байкова, а осенью 1915 г. велись пробные плавки в пламенной печи на заводе. Летом 1916 г. на Ревдинском заводе были произведены опыты выплавки медно-никелевых штейнов из бедных никелевых руд (0,86% Ni) и бедных медью колчеданов (1,5% Сu). Плавка велась в шахтной печи. В это же время в доменной печи проплавлялись ревдинские никельсодержащие бурые железняки на никелистый чугун (весь никель руды при этом концентрируется в чугуне), поставлявшийся по контракту с морским ведомством на его ленинградские заводы. Все перечисленные исследования вследствие целого ряда обстоятельств не получили в то время завершения в форме соответствующих заводских процессов. В последние годы проблема получения никеля из уральских руд снова встала на разрешение, и практическое осуществление ее, сообразно содержанию никеля в рудах, должно происходить в двух направлениях. Содержание никеля в уральских рудах - невысокое, и по нему руды делятся на два сорта: 1-й и 2-й. Руды 1-го сорта, пригодные для пирометаллургической переработки, в среднем содержат около 3% Ni; руды 2-го сорта - около 1,5% и ниже. Последние руды не м. б. подвергнуты переработке плавкой без предварительного их обогащения. Другая возможность переработки бедных никелевых руд - путь гидрометаллургический; он д. б. еще изучен. В настоящее время для переработки руд 1-го сорта на Урале строится завод.

Металл в нечистом виде впервые получил в 1751 году шведский химик А. Кронстедт, предложивший и название элемента. Значительно более чистый металл получил в 1804 году немецкий химик И. Рихтер. Название "Никель" происходит от минерала купферникеля (NiAs), известного уже в 17 веке и часто вводившего в заблуждение горняков внешним сходством с медными рудами (нем. Kupfer - медь, Nickel - горный дух, якобы подсовывавший горнякам вместо руды пустую породу). С середины 18 века Никель применялся лишь как составная часть сплавов, по внешности похожих на серебро. Широкое развитие никелевой промышленности в конце 19 века связано с нахождением крупных месторождений никелевых руд в Новой Каледонии и в Канаде и открытием "облагораживающего" его влияния на свойства сталей.

Распространение Никеля в природе. Никель - элемент земных глубин (в ультраосновных породах мантии его 0,2% по массе). Существует гипотеза, что земное ядро состоит из никелистого железа; в соответствии с этим среднее содержание Никель в земле в целом по оценке около 3%. В земной коре, где Никеля 5,8·10 -3 %, он также тяготеет к более глубокой, так называемых базальтовой оболочке. Ni в земной коре - спутник Fe и Mg, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния Никель входит в виде изоморфной примеси. Собственных минералов Никеля известно 53; большинство из них образовалось при высоких температурах и давлениях, при застывании магмы или из горячих водных растворов. Месторождения Никеля связаны с процессами в магме и коре выветривания. Промышленные месторождения Никеля (сульфидные руды) обычно сложены минералами Никеля и меди. На земной поверхности, в биосфере Никель - сравнительно слабый мигрант. Его относительно мало в поверхностных водах, в живом веществе. В районах, где преобладают ультраосновные породы, почва и растения обогащены никелем.

Физические свойства Никеля. При обычных условиях Никель существует в виде β-модификации, имеющей гранецентрированную кубическую решетку (а = 3,5236Å). Но Никель, подвергнутый катодному распылению в атмосфере H 2 , образует α-модификацию, имеющую гексагональную решетку плотнейшей упаковки (а = 2,65Å, с = 4,32Å), которая при нагревании выше 200 °C переходит в кубическую. Компактный кубический Никель имеет плотность 8,9 г/см 3 (20 °C), атомный радиус 1,24Å, ионные радиусы: Ni 2+ 0,79Å, Ni 3+ 0,72Å; t пл 1453 °C; t кип около 3000 °C; удельная теплоемкость при 20°C 0,440 кдж/(кг·К) ; температурный коэффициент линейного расширения 13,3·10 -6 (0-100 °C); теплопроводность при 25°C 90,1 вт/(м·К) ; тоже при 500 °C 60,01 вт/(м·К) . Удельное электросопротивление при 20°C 68,4 ном·м, т.е. 6,84 мком·см; температурный коэффициент электросопротивления 6,8·10 -3 (0-100 °C). Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 (т. е. 40-50 кгс/мм 2); предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твердость по Бринеллю 600- 800 Мн/м 2 . В температурном интервале от 0 до 631 К (верхняя граница соответствует точке Кюри) Никель ферромагнитен. Ферромагнетизм Никеля обусловлен особенностями строения внешних электронных оболочек (3d 8 4s 2) его атомов. Никель вместе с Fe (3d 6 4s 2) и Со (3d 7 4s 2), также ферромагнетиками, относится к элементам с недостроенной 3d-электронной оболочкой (к переходным 3d-металлам). Электроны недостроенной оболочки создают нескомпенсированный спиновый магнитный момент, эффективное значение которого для атомов Никеля составляет 6 μ Б, где μ Б - магнетон Бора. Положительное значение обменного взаимодействия в кристаллах Никеля приводит к параллельной ориентации атомных магнитных моментов, то есть к ферромагнетизму. По той же причине сплавы и ряд соединений Никеля (оксиды, галогениды и других) магнитоупорядочены (обладают ферро-, реже ферримагнитной структурой). Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монелъ-металл, инвар и других).

Химические свойства Никеля. В химические отношении Ni сходен с Fe и Со, но также и с Cu и благородными металлами. В соединениях проявляет переменную валентность (чаще всего 2-валентен). Никель - металл средней активности. Поглощает (особенно в мелкораздробленном состоянии) большие количества газов (H 2 , СО и других); насыщение Никеля газами ухудшает его механические свойства. Взаимодействие с кислородом начинается при 500 °C; в мелкодисперсном состоянии Никель пирофорен - на воздухе самовоспламеняется. Из оксидов наиболее важен NiO - зеленоватые кристаллы, практически нерастворимые в воде (минерал бунзенит). Гидрооксид выпадает из растворов никелевых солей при прибавлении щелочей в виде объемистого осадка яблочно-зеленого цвета. При нагревании Никель соединяется с галогенами, образуя NiX 2 . Сгорая в парах серы, дает сульфид, близкий по составу к Ni 3 S 2 . Моносульфид NiS может быть получен нагреванием NiO с серой.

С азотом Никель не реагирует даже при высоких температурах (до 1400 °C). Растворимость азота в твердом Никеле приблизительно 0,07% по массе (при 445 °C). Нитрид Ni 3 N может быть получен пропусканием NH 3 над NiF 2 , NiBr 2 или порошком металла при 445 °C. Под действием паров фосфора при высокой температуре образуется фосфид Ni 3 P 2 в виде серой массы. В системе Ni - As установлено существование трех арсенидов: Ni 5 As 2 , Ni 3 As (минерал маухерит) и NiAs. Структурой никель-арсенидного типа (в которой атомы As образуют плотнейшую гексагональную упаковку, все октаэдрические пустоты которой заняты атомами Ni) обладают многие металлиды. Неустойчивый карбид Ni 3 C может быть получен медленным (сотни часов) науглероживанием (цементацией) порошка Никеля в атмосфере СО при 300 °C. В жидком состоянии Никель растворяет заметное количество С, выпадающего при охлаждении в виде графита. При выделении графита Никель теряет ковкость и способность обрабатываться давлением.

В ряду напряжений Ni стоит правее Fe (их нормальные потенциалы соответственно -0,44 в и -0,24 в) и поэтому медленнее, чем Fe, растворяется в разбавленных кислотах. По отношению к воде Никель устойчив. Органические кислоты действуют на Никель лишь после длительного соприкосновения с ним. Серная и соляная кислоты медленно растворяют Никель; разбавленная азотная - очень легко; концентрированная HNO 3 пассивирует Никель, однако в меньшей степени, чем железо.

При взаимодействии с кислотами образуются соли 2-валентного Ni. Почти все соли Ni (II) и сильных кислот хорошо растворимы в воде, растворы их вследствие гидролиза имеют кислую реакцию. Труднорастворимы соли таких сравнительно слабых кислот, как угольная и фосфорная. Большинство солей Никеля разлагается при прокаливании (600- 800 °C). Одна из наиболее употребительных солей - сульфат NiSO 4 кристаллизуется из растворов в виде изумрудно-зеленых кристаллов NiSO 4 ·7H 2 O - никелевого купороса. Сильные щелочи на Никель не действуют, но он растворяется в аммиачных растворах в присутствии (NH 4) 2 CO 3 с образованием растворимых аммиакатов, окрашенных в интенсивно-синий цвет; для большинства из них характерно наличие комплексов 2+ и . На избирательном образовании аммиакатов основываются гидрометаллургические методы извлечения Никеля из руд. NaOCl и NaOBr осаждают из растворов солей Ni (II), гидрооксид Ni(OH) 3 черного цвета. В комплексных соединениях Ni, в отличие от Со, обычно 2-валентен. Комплексное соединение Ni с диметилглиоксимом (C 4 H 7 O 2 N) 2 Ni служит для аналитического определения Ni.

При повышенных температурах Никель взаимодействует с оксидами азота, SO 2 и NH 3 . При действии СО на его тонкоизмельченный порошок при нагревании образуется карбонил Ni(CO) 4 . Термической диссоциацией карбонила получают наиболее чистый Никель.

Получение Никеля. Около 80% Никеля от общего его производства получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Никеля в сульфидный расплав (штейн), содержащий 10-15% Ni. Обычно электроплавке предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Cu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni - файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового Никель отливают аноды и рафинируют электролитически. Содержание примесей в электролитном Никель (марка 110) 0,01%.

Для разделения Cu и Ni используют также так называемых карбонильный процесс, основанный на обратимости реакции: Ni + 4CO = Ni(CO) 4 . Получение карбонила проводят при 100-200 атм и при 200-250 °C, а его разложение - без доступа воздуха при атм. давлении и около 200 °C. Разложение Ni(CO) 4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице).

В современное "автогенных" процессах плавка осуществляется за счет тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO 2 , пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Все более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно Никель переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением).

Из силикатных (окисленных) руд Никель также может быть сконцентрирован в штейне при введении в шихту плавки флюсов - гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16-20% Ni, 16-18% S, остальное - Fe. Технология извлечения Никеля из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах Со их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали. Для извлечения Никеля из окисленных руд применяют также гидрометаллургические методы - аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание и других.

Применение Никеля. Подавляющая часть Ni используется для получения сплавов с другими металлами (Fe, Cr, Cu и другими), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы Никеля используются в конструкциях атомных реакторов.

Значит, количество Никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий Никель в чистом виде применяют для изготовления листов, труб и т. д. Он используется также в химические промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель- весьма дефицитный металл и по возможности должен заменяться другими, более дешевыми и распространенными материалами.

Переработка руд Никеля сопровождается выделением ядовитых газов, содержащих SO 2 и нередко As 2 O 3 . Очень токсична СО, применяемая при рафинировании Никеля карбонильным методом; весьма ядовит и легко летуч Ni(CO) 4 . Смесь его с воздухом при 60 °C взрывается. Меры борьбы: герметичность аппаратуры, усиленная вентиляция.

Никель в организме является необходимым микроэлементом. Среднее содержание его в растениях 5,0·10 -5 % на сырое вещество, в организме наземных животных 1,0·10 -6 %, в морских - 1,6·10 -4 %. В животном организме Никель обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Установлено, что Никель активирует фермент аргиназу, влияет на окислительные процессы; у растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и других). На обогащенных Никелем почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений - уродливые формы, у животных - заболевания глаз, связанные с повышенным накоплением Никеля в роговице: кератиты, кератоконъюнктивиты).

Никель

НИ́КЕЛЬ -я; м. [нем. Nickel] Химический элемент (Ni), серебристо-белый тугоплавкий металл с сильным блеском (применяется в промышленности).

Ни́келевый, -ая, -ое. Н. рудник. Н-ая руда. Н-ые сплавы. Н-ое покрытие.

ни́кель

(лат. Niccolum), химический элемент VIII группы периодической системы. Название от немецкого Nickel - имя злого духа, якобы мешавшего горнякам. Серебристо-белый металл; плотность 8,90 г/см 3 , t пл 1455°C; ферромагнитен (точка Кюри 358°C). Очень стоек к действию воздуха, воды. Главные минералы - никелин, миллерит, пентландит. Около 80% никеля идёт на никелевые сплавы. Применяют также для производства аккумуляторов, химической аппаратуры, для антикоррозионных покрытий (никелирование), как катализатор многих химических процессов.

НИКЕЛЬ

НИ́КЕЛЬ (лат. Niссolum), Ni, химический элемент с атомным номером 28, атомная масса 58,69. Химический символ элемента Ni произносится так же, как и название самого элемента. Природный никель состоит из пяти стабильных нуклидов (см. НУКЛИД) : 58 Ni (67,88 % по массе), 60 Ni (26,23 %), 61 Ni (1,19 %), 62 Ni (3,66 %) и 64 Ni (1,04 %). В периодической системе Д. И. Менделеева никель входит в группу VIIIВ и вместе с железом (см. ЖЕЛЕЗО) и кобальтом (см. КОБАЛЬТ) образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома никеля 3s 2 p 6 d 8 4s 2 . Образует соединения чаще всего в степени окисления +2 (валентность II), реже - в степени окисления +3 (валентность III) и очень редко в степенях окисления +1 и +4 (валентности соответственно I и IV).
Радиус нейтрального атома никеля 0,124 нм, радиус иона Ni 2+ - от 0,069 нм (координационное число 4) до 0,083 нм (координационное число 6). Энергии последовательной ионизации атома никеля 7,635, 18,15, 35,17, 56,0 и 79 эВ. По шкале Полинга электроотрицательность никеля 1,91. Стандартный электродݑː٠потенциал Ni 0 /Ni 2+ –0,23 B.
Простое вещество никель в компактном виде - блестящий серебристо-белый металл.
История открытия
Уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer - медь, а Nickel - имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель - соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А. Ф. Кронстедт (см. КРОНСТЕДТ Аксель Фредрик) в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого-то другого металла.
Только в 1775 г., через 10 лет после смерти Кронстедта, швед Т. Бергман выполнил исследования, позволявшие заключить, что никель - это простое вещество. Но окончательно никель как элемент утвердился только в начале 19-го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера (см. РИХТЕР Иеремия Вениамин) , который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.
Нахождение в природе
В земной коре содержание никеля составляет около 8·10 -3 % по массе. Возможно, громадные количества никеля - около 17·10 19 т - заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3 % состоит из никеля, а среди составляющих планету элементов никель занимает пятое место - после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют. Важнейшие минералы никеля: никелин (см. НИКЕЛИН) (современное название купферникеля) NiAs, пентландит (см. ПЕНТЛАНДИТ) [сульфид никеля и железа состава (Fe,Ni) 9 S 8 ], миллерит (см. МИЛЛЕРИТ) NiS, гарниерит (см. ГАРНИЕРИТ) (Ni, Mg) 6 Si 4 O 10 (OH) 2 и другие никельсодержащие силикаты. В морской воде содержание никеля составляет примерно 1·10 -8 –5·10 -8 %
Получение
Значительную часть никеля получают из сульфидных медно-никелевых руд. Из обогащенного сырья сначала готовят штейн - сульфидный материал, содержащий, кроме никеля, еще и примеси железа, кобальта, меди и ряда других металлов. Методом флотации (см. ФЛОТАЦИЯ) получают никелевый концентрат. Далее штейн обычно подвергают обработке для отделения примесей железа и меди, а затем обжигают и образовавшийся оксид восстанавливают до металла. Существуют и гидрометаллургические методы получения никеля, в которых для его извлечения из руды используют раствор аммиака (см. АММИАК) или серной кислоты (см. СЕРНАЯ КИСЛОТА) . Для дополнительной очистки черновой никель подвергают электрохимическому рафинированию.
Физические и химические свойства
Никель - ковкий и пластичный металл. Он обладает кубической гранецентрированной кристаллической решеткой (параметр а=0,35238 нм). Температура плавления 1455°C, температура кипения около 2900°C, плотность 8,90 кг/дм 3 . Никель - ферромагнетик (см. ФЕРРОМАГНЕТИК) , точка Кюри (см. КЮРИ ТОЧКА) около 358°C
На воздухе компактный никель стабилен, а высокодисперсный никель пирофорен (см. ПИРОФОРНЫЕ МЕТАЛЛЫ) . Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления. С водой и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими.
Металлический никель реагирует с азотной кислотой, причем в результате образуется нитрат никеля(II) Ni(NO 3) 2 и выделяется соответствующий оксид азота, например:
3Ni + 8HNO 3 = 3Ni(NO 3) 2 + 2NO + 4H 2 O
Только при нагревании на воздухе до температуры выше 800°C металлический никель начинает реагировать с кислородом с образованием оксида NiO.
Оксид никеля обладает основными свойствами. Он существует в двух полиморфных модификациях: низкотемпературной (гексагональная решетка) и высокотемпературной (кубическая решетка, устойчива при температуре выше 252°C). Имеются сообщения о синтезе оксидных фаз никеля состава NiO 1,33-2,0 .
При нагревании никель реагирует со всеми галогенами (см. ГАЛОГЕНЫ) с образованием дигалогенидов NiHal 2 . Нагревание порошков никеля и серы приводит к образованию сульфида никеля NiS. И растворимые в воде дигалогениды никеля, и нерастворимый в воде сульфид никеля могут быть получены не только «сухим», но и «мокрым» путем, из водных растворов.
С графитом никель образует карбид Ni 3 C, c фосфором - фосфиды составов Ni 5 P 2 , Ni 2 P, Ni 3 P. Никель реагирует и с другими неметаллами, в том числе (при особых условиях) с азотом. Интересно, что никель способен поглощать большие объемы водорода, причем в результате образуются твердые растворы водорода в никеле.
Известны такие растворимые в воде соли никеля, как сульфат NiSO 4 , нитрат Ni(NO 3) 2 и многие другие. Большинство этих солей при кристаллизации из водных растворов образует кристаллогидраты, например, NiSO 4 .7Н 2 О, Ni(NO 3) 2 .6Н 2 О. К числу нерастворимых соединений никеля относятся фосфат Ni 3 (PO 4) 2 и силикат Ni 2 SiO 4 .
При добавлении щелочи к раствору соли никеля(II) выпадает зеленый осадок гидроксида никеля:
Ni(NO 3) 2 + 2NaOH = Ni(OH) 2 + 2NaNO 3
Ni(OH) 2 обладает слабоосновными свойствами. Если на суспензию Ni(OH) 2 в щелочной среде воздействовать сильным окислителем, например, бромом, то возникает гидроксид никеля(III):
2Ni(OH) 2 + 2NaOH + Br 2 = 2Ni(OH) 3 + 2NaBr
Для никеля характерно образование комплексов. Так, катион Ni 2+ с аммиаком образует гексаамминовый комплекс 2+ и диакватетраамминовый комплекс 2+ . Эти комплексы с анионами образуют синие или фиолетовые соединения.
При действии фтора F 2 на смесь NiCl 2 и КСl возникают комплексные соединения, содержащие никель в высоких степенях окисления: +3 - (K 3 ) и +4 - (K 2 ).
Порошок никеля реагирует с оксидом углерода(II) СО, причем образуется легко летучий тетракарбонил Ni(CO) 4 , который находит большое практическое применение при нанесении никелевых покрытий, приготовлении высокочистого дисперсного никеля и т. д.
Характерна реакция ионов Ni 2+ с диметилглиоксимом, приводящая к образованию розово-красного диметилглиоксимата никеля. Эту реакцию используют при количественном определении никеля, а продукт реакции - как пигмент косметических материалов и для других целей.
Применение
Основная доля выплавляемого никеля расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это - так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов.
При изготовлении сердечников электромагнитов широкое применение находят сплавы под общим названием пермаллои (см. ПЕРМАЛЛОЙ) . Эти сплавы, кроме железа, содержат от 40 до 80 % никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят из хрома (10-30 %) и никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.
Высокая коррозионная стойкость никелевых покрытий позволяет использовать тонкие никелевые слои для защиты различных металлов от коррозии путем их никелирования. Одновременно никелирование придает изделиям красивый внешний вид. В этом случае для проведения электролиза используют водный раствор двойного сульфата аммония и никеля (NH 4) 2 Ni(SO 4) 2 .
Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей.
Специально приготовленный дисперсный никель (так называемый никель Ренея) находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые соли служат катализаторами различных процессов.
Билогическая роль
Никель относится к числу микроэлементов (см. МИКРОЭЛЕМЕНТЫ) , необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям - у растений появляются уродливые формы, у животных - заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) - 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO) 4 . ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м 3 (для различных соединений).

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "никель" в других словарях:

    НИКЕЛЬ - (симв. Ni), металл с атомным весом 58,69, порядковый номер 28, принадлежит вместе с кобальтом и железом к VIII группе и 4 му ряду периодической системы Менделеева. Уд. в. 8,8, t° плавления 1 452°. В своих обычных соединениях Н.… … Большая медицинская энциклопедия

    - (символ Ni), серебристо белый металл, ПЕРЕХОДНЫЙ ЭЛЕМЕНТ, открытый в 1751 г. Его основные руды: сульфидные никеле железные руды (пентландит) и ар сенид никеля (никелин). У никеля сложный процесс очищения, включающий дифференцированное разложение… … Научно-технический энциклопедический словарь

    - (нем. Nickel). Металл серебристо белого цвета, в чистом виде не встречается. В последнее время употребляется на выделку столовой и кухонной посуды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИКЕЛЬ нем. Nickel … Словарь иностранных слов русского языка

    Никель - представляет собой относительно твердый серовато белый металл с температурой плавления 1453 град. С. Он является ферромагнетиком, отличается ковкостью, пластичностью, прочностью, а также стойкостью к коррозии и окислению. Никель в основном… … Официальная терминология

Никель - простое вещество, пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен. Относится к тяжелым цветным металлам, в чистом виде на земле не встречается — обычно входит в состав различных руд, высокой твердостью, хорошо полируется, является ферромагнетиком — притягивается магнитом, в периодической системе Менделеева обозначается символом Ni и имеет 28 порядковый номер.

Смотрите так же:

СТРУКТУРА

Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 å нм, пространственная группа Fm3m. Эта кристаллическая структура устойчива к давлению, по меньшей мере 70 ГПа. При обычных условиях никель существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236 å). Но никель, подвергнутый катодному распылению в атмосфере h 2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 å, с = 4,32 å), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический никель имеет плотность 8,9 г/см 3 (20 °С), атомный радиус 1,24 å

СВОЙСТВА

Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 , предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твёрдость по Бринеллю 600-800 Мн/м 2 . В температурном интервале от 0 до 631К (верхняя граница соответствует Кюри точке). Ферромагнетизм никеля обусловлен особенностями строения внешних электронных оболочек его атомов. Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монель-металл, инвар и др.).

ЗАПАСЫ И ДОБЫЧА

Никель довольно распространён в природе - его содержание в земной коре составляет около 0,01%(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8%). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 - 0,41% Ni.
В растениях в среднем 5·10 −5 весовых процентов никеля, в морских животных - 1,6·10 −4 , в наземных - 1·10 −6 , в человеческом организме - 1…2·10 −6 .

Основную массу никеля получают из гарниерита и магнитного колчедана.
Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8% Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
Карбонильный способ (метод Монда): Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.
Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al 2 O 3

ПРОИСХОЖДЕНИЕ

Месторождения сульфидных медно-никелевых руд связаны с лополитоподобными или плитообразными массивами расслоенных габброидов, приуроченных к зонам глубинных разломов на древних щитах и платформах. Характерной особенностью медно-никелевых месторождений всего мира является выдержанный минеральный состав руд: пирротин, пентландит, халькопирит, магнетит; кроме них в рудах встречаются пирит, кубанит, полидимит, никелин, миллерит, виоларит, минералы группы платины, изредка хромит, арсениды никеля и кобальта, галенит, сфалерит, борнит, макинавит, валлерит, графит, самородное золото.

Экзогенные месторождения силикатных никелевых руд повсеместно связаны с тем или иным типом коры выветривания серпентенитов. при выветривании происходит стадийное разложение минералов, а также перенос подвижных элементов, с помощью воды из верхних частей коры в нижние. Там эти элементы выпадают в осадок в виде вторичных минералов.
В месторождениях этого типа заключены запасы никеля в 3 раза превышающие его запасы в сульфидных рудах, а запасы некоторых месторождений достигают 1 млн т. и более никеля. Крупные запасы силикатных руд сосредоточены на Новой Каледонии, Филиппинах, Индонезии, Австралии и др. странах. Среднее содержание в них никеля равно 1.1-2%. Кроме того в рудах часто содержится кобальт.

ПРИМЕНЕНИЕ

Подавляющая часть никеля используется для получения сплавов с другими металлами (fe, cr, cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы никеля используются в конструкциях атомных реакторов.

Значительное количество никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий никель в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель - весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Применяется при изготовлении брекет-систем (никелид титана), протезирования. Широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель». Также никель используется для производства обмотки струн музыкальных инструментов.

Никель (англ. Nickel) — Ni

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.08-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.17.2
Dana (8-ое издание) 1.1.11.5
Hey’s CIM Ref 1.61

Похожие публикации