Интернет-журнал дачника. Сад и огород своими руками

Что такое липиды их основные функции. Состав, свойства и функции липидов в организме

Липиды объединяют большое количество жиров и жироподобных веществ растительного и животного происхождения, имеющих ряд общих признаков:

а) нерастворимость в воде (гидрофобность и хорошая растворимость в органических растворителях, бензине, диэтиловом эфире, хлороформе и др.);

б) наличие в их молекулах длинноцепочечных углеводородных радикалов и сложноэфирных

группировок ().

Большинство липидов не являются высокомолекулярными соединениями и состоят из нескольких, связанных одна с другой молекул. В состав липидов могут входить спирты и линейные цепи ряда карбоновых кислот. В некоторых случаях их отдельные блоки могут состоять из высокомолекулярных кислот, разнообразных остатков фосфорной кислоты, углеводов, азотистых оснований и других компонентов.

Липиды вместе с белками и углеводами составляют основную массу органических веществ, всех живых организмов, являясь обязательным компонентом каждой клетки.

  1. Простые и сложные липиды

При выделении липидов из масличного сырья, в масло переходит большая группа сопутствующих им жирорастворимых веществ: стероиды, пигменты, жирорастворимые витамины и некоторые другие соединения. Извлекаемая из природных объектов смесь, состоящая из липидов и растворимых в них соединений, получила название «сырого» жира.

Основные компоненты сырого жира

Вещества сопутствующие липидам играют большую роль в пищевой технологии, влияют на пищевую и физиологическую ценность полученных продуктов питания. Вегетативные части растений накапливают не более 5% липидов, главным образом в семенах и плодах. Например, содержание липидов в различных растительных продуктах составляет (г/100г): подсолнечник 33-57, какао (бобы) 49-57, соя 14-25, конопля 30-38, пшеница 1,9-2,9, арахис 54-61, рожь 2,1-2,8, лён 27-47, кукуруза 4,8-5,9, кокосовая пальма 65-72. Содержание в них липидов зависит не только от индивидуальных особенностей растений, но и от сорта, места, условий произрастания. Липиды играют важную роль в процессах жизнедеятельности организма.

Их функции весьма разнообразны: важна их роль в энергетических процессах, в защитных реакциях организма, в его созревании, старении и т.д.

Липиды входят в состав всех структурных элементов клетки и в первую очередь клеточных мембран, оказывая влияние на их проницаемость. Они участвуют в передаче нервного импульса, обеспечивают межклеточный контакт, активный перенос питательных веществ через мембраны, транспорт жиров в плазме крови, синтез белка и различные ферментативные процессы.

По своим функциям в организме условно делят на две группы: запасные и структурные. Запасные (в основном ацилглицерины) обладают высокой калорийностью, являются энергетическим резервом организма и используются им при недостатке питания и заболеваниях.

Запасные липиды являются запасными веществами, помогающими организму переносить неблагоприятные воздействия внешней среды. Большая часть растений (до 90%) содержит запасные липиды, главным образом в семенах. Они легко извлекаются из жиросодержащего материала (свободные липиды).

Структурные липиды (в первую очередь фосфолипиды) образуют сложные комплексы с белками и углеводами. Они участвуют в разнообразных сложных процессах, протекающих в клетке. По массе они составляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» липиды.

Природные жирные кислоты, входящие в состав липидов, животных и растений, имеют много общих свойств. Они содержат, как правило, четкое число углеродных атомов и имеют неразветвленную цепь. Условно жирные кислоты делят на три группы: насыщенные, мононенасыщенные и полиненасыщенные. Ненасыщенные жирные кислоты животных и человека обычно содержат двойную связь между девятым и десятым атомами углерода, остальные карбоновые кислоты, входящие в состав жиров следующие:

Большинство липидов имеют некоторые общие структурные особенности, однако строгой классификации липидов пока не существует. Один из подходов к вопросу классификации липидов химический, согласно которому к липидам относятся производные спиртов и высших жирных кислот.

Схема классификации липидов.

Простые липиды. Простые липиды представлены двухкомпанентными веществами, сложными эфирами жирных высших кислот с глицерином, высшими или полициклическими спиртами.

К ним относятся жиры и воски. Наиболее важными представителями простых липидов являются ацилглицериды (глицерины). Они составляют основную массу липидов (95-96%) и именно их называют маслами и жирами. В состав жров входят в основном триглицериды, но присутствуют моно− и диацилглицерины:

Свойства конкретных масел определяются составом жирных кислот, участвующих в построении их молекул и положением, которое занимают остатки этих кислот в молекулах масел и жиров.

В жирах и маслах обнаружено до 300 карбоновых кислот различного строения. Однако большинство из них присутствуют в небольшом количестве.

Стеариновые и пальмитиновые кислоты входят в состав практически всех природных масел и жиров. Эруковая кислота входит в состав рапсового масла. В состав большинства наиболее распространенных масел входят ненасыщенные кислоты, содержащие 1-3 двойные связи. Некоторые кислоты природных масел и жиров имеют, как правило, цис-конфигурацию, т.е. заместители распределены по одну сторону плоскости двойной связи.

Кислоты, имеющие разветвлённые углеводные цепи, содержащие окси, кето и другие группы, в липидах, как правило, содержатся в незначительном количестве. Исключение составляет рацинолевая кислота в касторовом масле. В природных растительных триацилглицеринах положения 1 и 3 заняты предпочтительно остатками насыщенных жирных кислот, а положение 2 ненасыщенными. В животных жирах картина обратная.

Положение остатков жирных кислот в триацилглицеринах существенно влияет на их физико-химические свойства.

Ацилглицерины − это жидкость или твердые вещества с низкими температурами плавления и довольно высокими температурами кипения, с повышенной вязкостью, без цвета и запаха, легче воды, нелетучи.

В воде жиры практически нерастворимы, но образуют с ней эмульсии.

Помимо обычных физических показателей жиры характеризуются рядом физико-химических констант. Эти константы для каждого вида жира и его сорта предусмотрены стандартом.

Кислотное число, или коэффициент кислотности, показывает сколько свободных жирных кислот содержится в жире. Оно выражается числом мг KOH, которое требуется для нейтрализации свободных жирных кисло в 1 г жира. Кислотное число служит показателем свежести жира. В среднем оно колеблется для разных сортов жира от 0,4 до 6.

Число омыления, или коэффициент омыления, определяет общее количество кислот, как свободных, так и связанных в триацилглицеринах, находящихся в 1 г жира. Жиры, содержащие остатки высокомолекулярных жирных кислот, имеют меньшее число омыления, чем жиры, образуемые низкомолекулярными кислотами.

Йодное число – показатель ненасыщенности жира. О определяется количеством граммов йода, присоединяющихся к 100 г жира. Чем выше йодное число, тем более ненасыщенным является жир.

Воски. Восками называют сложные эфиры высших жирных кислот и высокомолекулярных спиртов (18-30 атомов углерода). Жирные кислоты, входящие в состав восков такие же, как и для жиров, но есть и специфические, характерные только для восков.

Например: карнаубовая ;

церотиновая ;

монтановая .

Общая формула восков может быть записана так:

Воски широко распространены в природе, покрывая тонким слоем листья, стебли, плоды растений, они предохраняют их от смачивания водой, высыхания, действия микроорганизмов. Содержание воска в зерне и плодах невелико.

Сложные липиды. Сложные липиды имеют многокомпонентные молекулы, отдельные части которых соединены химическими связями различного типа. К ним относятся фосфолипиды, состоящие из остатков жирных кислот, глицерина и других многоатомных спиртов, фосфорной кислоты и азотистых оснований. В структуре гликолипидов наряду с многоатомными спиртами и высокомолекулярной жирной кислотой имеются также углеводы (обычно остатки галактозы, глюкозы, маннозы).

Имеются также две группы липидов в составе которых представлены и простые и сложные липиды. Это − диольные липиды, являющиеся простыми и сложными липидами двухатомных спиртов и высокомолекулярных жирных кислот, содержащих в ряде случаев фосфорную кислоту, азотистые основания.

Ормитинолипиды построены из остатков жирных кислот, аминокислоты ормитина или лизина и включающих в некоторых случаях двухатомные спирты. Наиболее важная и распространенная группа сложных липидов − фосфолипиды. Молекула их построена из остатков спиртов, высокомолекулярных жирных кислот, фосфорной кислоты, азотистых оснований, аминокислот и некоторых других соединений.

Общая формула фосфолипидов (фосфотидов) имеет следующий вид:

Следовательно молекуле фосфолипидов имеются группировки двух типов: гидрофильные и гидрофобные.

В качестве гидрофильных группировок выступают остатки фосфорной кислоты и азотистые основания, а в качестве гидрофобных группировок углеводородные радикалы.

Схема строения фосфолипидов

Рис. 11. Молекула фосфолипидов

Гидрофильная полярная головка − это остаток фосфорной кислоты и азотистого основания.

Гидрофобные хвосты − это углеводородные радикалы.

Фосфолипиды выделены в качестве побочных продуктов при получении масел. Являются поверхностно-активными веществами, улучшающими хлебопекарные достоинства пшеничной муки.

В качестве эмульгаторов они применяются также в кондитерской промышленности и при производстве маргариновой продукции. Они являются обязательным компонентом клеток.

Вместе с белками и углеводами они участвуют в построении мембран клеток и субклеточных структур, выполняющих функции несущих конструкции мембран. Они способствуют лучшему усвоению жиров и препятствуют ожирению печени, играя важную роль в профилактике атеросклероза.

      Превращение липидов и их влияние на качество продуктов при хранении и переработке:

а) гидролитический распад

б) гидрогенизация

в) переэтерификация

г) аутоокисление и ферментативное окисление (прогоркание).

Вопрос 1. Какие органические вещества входят в состав клетки?

Однозначной классификации органических веществ, входящих в состав клетки, не су­ществует, поскольку они очень разнообразны по своим размерам, строению и функциям. Наиболее распространено деление всех органи­ческих соединений на низкомолекулярные (липиды, аминокислоты, нуклеотиды, моноса­хариды, органические кислоты) и высокомо­лекулярные, или биополимеры. Биополиме­ры, в свою очередь, можно подразделить на гомополимеры (регулярные полимеры) и ге­терополимеры (нерегулярные полимеры). Гомополимеры состоят из мономеров (более мелких молекул) одного типа. Это, например, гликоген, крахмал и целлюлоза, образованные молекулами глюкозы. Мономеры гетерополи­меров отличаются друг от друга. Например, белки состоят из 20 типов аминокислот, а ДНК — из 4 типов нуклеотидов.

Вопрос 2. Что такое липиды? Опишите их хи­мический состав.

Липиды — гидрофобные органические со­единения, нерастворимые в воде, но хорошо растворимые в органических веществах (эфи­ре, бензине, хлороформе). Липиды широко представлены в живой природе и играют ог­ромную роль в жизнедеятельности клетки. Их можно подразделить на три основные группы: нейтральные жиры, воски и жироподобные ве­щества. По химической структуре нейтраль­ные жиры представляют собой сложные соеди­нения трехатомного спирта глицерина и остат­ков жирных кислот. Если в этих жирных кислотах много двойных -СН=СН- связей, то липид жидкий (подсолнечное масло и дру­гие растительные жиры, рыбий жир), а если двойных связей мало — твердый (сливочное масло, большинство других животных жиров). К жироподобным веществам относятся, на­пример, фосфолипиды. По своей структуре они сходны с жирами, но один или два остатка жирных кислот в их молекуле замещены ос­татком фосфорной кислоты.

Вопрос 3. Какова роль липидов в обеспечении жизнедеятельности организма?

Нейтральные жиры являются чрезвычай­но важным источником энергии в организме и, кроме того, источником метаболической во­ды. Иными словами, при распаде жиров выде­ляется не только энергия, но и вода, что осо­бенно важно для обитателей пустынь и живот­ных, впадающих в длительную спячку. Жиры откладываются в основном в жировой ткани, которая служит энергетическим депо, предо­храняет организм от потери тепла и выполня­ет защитную функцию. Так, в полости тела формируются защитные жировые прокладки между внутренними органами. Подкожная жировая клетчатка особенно развита у китов и тюленей, постоянно находящихся в холодной воде. Сальные железы кожи выделяют секрет для смазки шерсти млекопитающих; у птиц аналогичную функцию выполняет копчиковая железа. Воск пчел служит для постройки сот. У растений, существующих в условиях недос­татка воды, часто развита восковая кутикула (белесый налет на поверхности листьев, стеб­лей, плодов). Она защищает растение от избы­точного испарения, ультрафиолетового излу­чения и механических повреждений.

Вопрос 4. В чем заключается биологическое значение жироподобных веществ?

Представители группы жироподобных ве­ществ — фосфолипиды формируют основу всех биологических мембран. Это чрезвычай­но важная функция, и ни одна клетка не мо­жет существовать без достаточного количества фосфолипидов. Принципиальным моментом является наличие в фосфолипидах мембран «гибких» остатков жирных кислот с двойными связями (имеют преимущественно раститель­ное происхождение). К жироподобным веще­ствам относятся также некоторые витамины (A, D, Е, К), а также холестерин. Название «холестерин» происходит от латинского слова «холео» — «желчь», поскольку из холестери­на в клетках печени синтезируются желчные кислоты, необходимые для нормального пере­варивания жиров. В надпочечниках, половых железах и плаценте из холестерина образуют­ся стероидные гормоны.

Вопрос 5. Вспомните из курса «Человек и его здоровье» функции витаминов, симптомы их недо­статочности.

Витамины — это необходимые нашему организму органические вещества, имеющие относительно небольшую молекулу. Они явля­ются незаменимыми компонентами пищи (наш организм синтезировать витамины не способен); при их дефиците возникают харак­терные заболевания (авитаминозы). Каждый витамин выполняет уникальную функцию. Так, витамины А и Е защищают мембраны клеток от окисления, кроме того, витамин А необходим для нормальной работы сетчатки глаза. Первым симптомом дефицита витамина А является ухудшение зрения (особенно в су­мерках). Под управлением витамина D каль­ций всасывается в кишечнике, а затем откла­дывается в костях (симптом авитаминоза — рахит). Витамин К необходим для нормально­го свертывания крови; витамин С — для фор­мирования соединительной ткани. Отсутствие витамина С в пище приводит к нарушению структуры стенок сосудов (возникают мелкие кровотечения) и распуханию суставов. Вита­мины группы В незаменимы для нормальной работы многих ферментов нашего организ­ма, в частности управляющих распадом глю­козы (B1), обменом аминокислот (В 2) и т. д. Витамин В 12 необходим для нормального син­теза гемоглобина и созревания эритроцитов.

  1. Функции липопротеинов в крови и плазме крови
  2. Разница между липопротеинами и липопротеидами
  3. Нарушение транспорта липидов

Липопротеины – это комплекс транспортных форм липидов (жиров и жироподобных веществ). Если не углубляться в химические термины, то в нестрогом смысле липопротеины – это сложные соединения, создавшиеся на основе жиров и белков с гидрофобными и электростатическими взаимодействиями.

Липиды не растворяются в воде, по сути являются молекулами с гидрофобным ядром, потому не могут переноситься кровью в чистом виде. Жир синтезируется в тканях организма – печени, кишечника, но для его транспорта необходимо включение жиров с помощью белков в состав липопротеинов.

Наружный слой или оболочка липопротеина состоит из белков, холестерина и фосфолипидов; она гидрофильная, поэтому липопротеин легко связывается с плазмой крови. Внутренняя часть или ядро состоит из эфиров холестерина, триглицеридов, высших жирных кислот и витаминов.

Липопротеины в стабильной концентрации поддерживают синтез и секрецию жировых и апобелковых компонентов (апобелками называют белки-стабилизаторы в составе липопротеинов).

Классификация липопротеинов проводится по разным основаниям с учетом химических, биологических и физических свойств и различий. Самая распространенная и имеющая практическое применение в медицине классификация основана на выявлении соотношения липидов и белков и, как следствие, плотности. Плотность определяется по результатам ультрацентрифугирования.

По плотности и поведению в гравитационном поле выделяют следующие липопротеиновые классы:

  1. Хиломикроны - самые легкие и крупные частицы; образуются в клетках кишечника и имеют в составе до 90 процентов липидов;
  2. Липопротеины очень низкой плотности; образуются в печени из углеводов;
  3. Липопротеины низкой плотности; образуются в русле крови из липопротеинов очень низкой плотности через стадию липопротеинов промежуточной плотности.
  4. Липопротеины высокой плотности – самые мелкие частицы; образуются в печени и имеют в составе до 80 процентов белков.
  5. Химический состав всем липопротеинов одинаков; разнятся пропорции – соотношения составляющих липопротеин веществ относительно друг друга.

По другой классификации липопротеины делятся на свободные, которые растворяются в воде, и несвободные, которые в воде не растворяются. Липопротеины плазмы, сыворотки крови растворимы в воде. Липопротеины мембранных стенок клеток, нервных волокон нерастворимы в воде.

Биохимический анализ крови назначается для сбора сведений об обмене веществ в организме, качестве работы внутренних органов и систем человека, уровне макроэлементов – белков, жиров, углеводов. Биохимический анализ делают в рамках медицинского обследования на скрытые заболевания и патологии. Он позволяет выявить проблему еще до появления первых симптомов болезни.

Один из рассматриваемых параметров биохимического анализа крови – липопротеины различной плотности – компоненты жирового обмена.

Если выявлено, что в крови повышено содержание липопротеинов низкой плотности, это означает, что в организме есть «плохой» холестерин и требуется дополнительное обследование на предмет выявления атеросклероза.

По показателям липопротеинов различной плотности выводят значение содержания в крови общего холестерина. Для оценки состояния сосудов важнее показатели отдельного взятых липопротеинов низкой плотности, чем общего холестерина.

Чтобы результаты биохимического анализа крови были достоверными, необходимо за 24 часа прекратить прием алкоголя, сильнодействующих лекарственных средств, за 12 часов не есть ничего и не пить подслащенные напитки, за 6 часов – не курить и не пить ничего, кроме воды.

Результаты анализа могут сильно отличаться от номы при отсутствии заболеваний внутренних органов на фоне беременности, в течение полутора-двух месяцев после родов, перенесенного недавнего инфекционного заболевания, сильного отравления, острой респираторной инфекции. В этом случае показана повторная сдача анализа после устранения препятствующих факторов.

Для получения более развернутого результата по показателям содержания липопротеинов в рамках диагностики сердечно-сосудистых заболеваний назначают липидограмму крови. Она показывает, сколько и какие липопротеины содержатся в крови, а также говорит об уровне холестерина и триглицеридов.

Функции липопротеинов в крови и плазме крови

Общая функция всех липопротеинов – транспорт липидов. Они переносят насыщенные мононенасыщенные жирные кислоты для получения их них энергии; полиненасыщенные жирные кислоты для синтеза гормонов – стероидов, эйкозаноидов; холестерин и фосфолипиды для использования их в качестве важного составного элемента клеточных мембран.

Поступающие жиры и углеводы обязательно должны расщепляться и транспортироваться по системам организма для усвоения или накопления.

  • Хиломикроны переносят экзогенный жир из кишечника в слои разной ткани, преимущественно в жировую ткань и экзогенный холестерин из кишечника в печень.
  • Липопротеины очень низкой плотности переносят эндогенный жир из печени в жировую ткань.
  • Липопротеины низкой плотности транспортируют эндогенный холестерин в ткани.
  • Липопротеины высокой плотности удаляют (выводят) холестерин из тканей в печень, из клеток печени холестерин выводится с желчью.

Липопротеины очень низкой и низкой плотности считаются атерогенными, то есть вызывающими при повышении их концентрации в крови атеросклероз. При атеросклерозе излишек жира, «плохого» холестерина выстилают сосудистые стенки изнутри, слипаются и прикрепляются к стенкам сосудов. Это приводит к повышение кровяного давления за счет сужения сосудистого просвета, снижению упругости стенок сосудов, образованию тромбов.

Эндогенные жиры синтезируются в организме, экзогенные жиры организм получает с пищей.

Разница между липопротеинами и липопротеидами

Липопротеины и липопротеиды – разные варианты написания одного и того же слова, обозначающего транспортную форму липидов. Оба варианта являются правильными, но чаще встречается написание «липопротеины».

Нарушение транспорта липидов

При нарушениях транспорта липидов и липидного обмена снижается энергетический потенциал организма, ухудшается терморегуляционная способность. Помимо этого, ухудшается передача нервных импульсов, снижается скорость ферментивных реакций.

Нарушение липидного обмена происходит либо на стадии образования, либо на стадии утилизации липопротеинов: в первом случае говорят о гипопротеинемии, во втором – о гиперпротеинемии.

Первичные причины нарушения липидного обмена – генетическое мутации. Вторичные причины – цирроз (дистрофия с последующим некрозом тканей печени), гипертиреоз (гиперфункция щитовидной железы), пиелонефрит или почечная недостаточность, сахарный диабет, желчекаменная болезнь, ожирение.

Временные нарушения вызываются приемом некоторых медицинских препаратов и их групп: инсулин, фенитоин, глюкокортикоиды, - а также большого количества алкоголя.

Классификация липидов достаточно обширна. Подобные вещества могут иметь отличимое химическое строение. Каждому классу компонентов присуща разная растворимость в природной воде и других органических соединениях. Подобные компоненты обеспечивают и принимают активное участие в процессах жизненной активности организма человека.

Стоит заметить тот факт, что некоторые классы липидов являются основным структурным составляющим мембран. Композиты выполняют оптимизацию процессов протекания межклеточных контактов и протекание этапов отдачи нервных импульсов. Соединения обеспечивают нормализацию проницаемости мембран клеток. Они присутствуют в организме всех живых существ, но у млекопитающих занимают другие функции.

Как уже известно, подобные вещества имеют различный химический состав, следовательно, основная классификация подразумевает биение компонентов и разделение их на разные классы именно по этому признаку.

Составы, молекулы которых вмещают в себя остатки жирных соединений и спирта – простые липиды. К подобной группе композитов относят:

  • триглицериды;
  • нейтральные глицериды;
  • воски.

Строение липидов предопределяет тот факт, что триглицериды и нейтральные глицериды относятся к липидам.

К классу липидов сложного строения относятся такие элементы:

  • фосфолипиды – составляющие являются производными ортофосфорной кислоты;
  • гликолипиды – содержат сахара в остаточном количестве;
  • стериды;
  • стерины.

Все перечисленные компоненты относятся к липидам, но имеют различный химический состав и способ образования в биологическом материале конкретного индивида.

Важно знать! Определенный термин химическая фракция нельзя отделять в качестве структурной характеристики элемента.

Классификация липидов подразумевает то, что все составы, относящиеся по строению к данному классу, имеют сходные особенности. Такая обеспеченность обуславливается за счет биологических особенностей композитов и возможности к растворенности.

Общие сведения

В организме человека жировые композиты концентрируются в свободном состоянии и имеют особенность к обеспечению функции фундаментальных блоков, для каждого класса химических структур.

Внимание! Ткани и клетки существующих живых организмов позволяют получать более 70 наименований жировых составов.

Основы, встречающиеся в естественной среде можно вариативно распределить на 3 всеобъемлющие группы:

  • насыщенные;
  • мононенасыщенные;
  • полиненасыщенные.

Существует еще одна, менее распространенная группа – природные жирные компоненты.

Важно подчеркнуть тот факт, что все вещества имеют четное количество атомов и неразветвленную цепь (химическое строение). В микробных клетках вещества имеют двойную связь.

Показатели растворимости – низкие, композиты обладают особенностью образовывать мицеллы в процессе растворения, имеющие отрицательный заряд и обладающие способностью к отталкиванию.

Глицериды

Эфиры кислот и глицерины смежно подходят под общее понятие нейтральных жиров. Классификация липидов сообщает о том, что вещества могут концентрироваться в крови человека в качестве протоплазматического жира. Вещества также выступают в качестве структурного вещества клеток и являются естественными жирами.

Среди характерных особенностей компонента можно определить следующие:

  • компоненту присущ неизменный химический состав;
  • концентрируется в тканях и органах человеческого организма в неизменном виде;
  • концентрация смесей, в крови пациента не изменяется даже при избытке;
  • может изменяться количество резерва.

Наибольшую массу нейтральных жиров определяют триглицериды, жирные соединения в которых могут быть насыщенными и ненасыщенными, то есть составляющие могут обладать идентичной структурой, но при этом принимать разную плотность.

Интересно знать! В подкожном жире среднестатистической особи 70 % олеиновой кислоты. Компонент имеет особенность плавиться при температурных показателях свыше 15 градусов.

Глицериды обладают особенностью вступать в химические реакции. В течении этапа омыления происходит выделение жировых концентраций в распаде с глицерином.

Воски

Воски вмещают от 20 до 70 атомов углерода. Являются сложными эфирами жирных кислот и двухатомных и одноатомных спиртов. Воски могут быть включены в состав жира, покрывающего кожу.

Внимание! Водоплавающие птицы удерживаются на плаву именно за счет воска.

Важно знать и такую особенность – воски выступают в качестве естественных метаболитов многих микроорганизмов.

Глицефосфолипиды

Классификация подразумевает деление фосфолипидов на сфинголипиды и глицефосфодлипиды.

Последние являются естественной производной фосфатидной кислоты, в составе которой содержится жирная основа, азотистые соединения и жирный спирт. Молекулы элементов не любят воду, но есть являются гидрофобными.

Из перечня жирных кислот вмещающихся в состав глицефосфолипидов выводят насыщенные жирные и ненасыщенные соединения.

Сфинголипиды

Самыми распространенными представителями группы сфинголипиды выступают сфингомиелины. Чаще всего такие соединения обнаруживают в клеточных мембранах у млекопитающих и растительных микроорганизмов. В организме особей компоненты в массовой концентрации локализуются в клеточных тканях: печень, почки и другие органы.

В процессе гидролиза создается:

  • одна молекула азотистого основания;
  • одна молекула фосфорной кислоты;
  • одна молекула двухатомного ненасыщенного аминоспирта;
  • одна молекула жирных кислот.

Молекулы могут иметь положительный и отрицательный заряд одновременно. Оснащены двумя неполярными хвостами, имеют полярную головку.

Гликолипиды

Также относятся липиды, в их доле концентрируются углеводные группы. Вещества принимают активное участие в процессах работы биологических мембран в организме индивида.

Современная классификация подразумевает разделение на три главных вида:

  • цереброзиды;
  • сульфатиды;
  • ганглиозиды.

Концентраты локализуются в выраженных концентрациях в тканях головного мозга человека.

Холин и фосфорная кислота не вмещаются в составе цереброзида. В их доле имеется гексон, который связан с гидроксильными группами эфирной связью.

В молекулах сульфатида содержится малый объем серной кислоты. Содержимое концентрируется в клетках мозга многих млекопитающих.

В процессе гидролиза ганглиозидов реально классифицировать высшие жирные кислоты, Д-глюкозу и галактозу, а также сфингозин. наиболее простейшие представители данной группы выводятся методом простого преобразования из эритроцитов. Присутствуют исключительно в сером веществе головного мозга, а также в плазматических мембранах нервных окончаний.

Общая классификация подразумевает отделение стероидов как композитов в отдельную группу. Такое разделение происходит в зависимости от того, что все составляющие в отличие от стероидов являются омыляемыми, то есть сами по себе стероиды не обладают особенностью гидролизоваться с выделением жирных кислот.

Стероиды

Компоненты крайне часто встречаются в естественных условиях. К такой группе относят:

  • устрашающий пациентов жирный спирт, именуемый липопротеидами;
  • желчные кислоты;
  • гормоны человека.

Природу этого компонента имеют другие составляющие.

Наиболее весомую задачу в течении процессов в организме индивида выполняет именно холестерин. Вещество принимает непосредственное участие во многих процессах жизнедеятельности организма. Обеспечивает процесс создания мембран клеток, синтез витамина Д и процессы выделения гормонов, присутствующих в организме обеих полов.

На основании описанной информации следует сделать вывод о том, что липиды – сложные соединения, присутствующие в организме каждого человека. Такие компоненты обеспечивают процессы поддержания активности организма в процессе жизни и выполняют важные функции. Некоторые компоненты данной классовой группы были известны, некоторые наименования редко бывают на слуху, но все без исключения вещества являются незаменимыми.

Которые нужны всему живому. В этой статье мы рассмотрим строение и функции липидов. Они бывают разнообразными как по структуре, так и по функциям.

Строение липидов (биология)

Липид — это сложное органическое химическое соединение. Оно состоит из нескольких компонентов. Давайте рассмотрим строение липидов более подробно.

Простые липиды

Строение липидов этой группы предусматривает наличие двух компонентов: спирта и жирных кислот. Обычно в химический состав таких веществ входят только три элемента: карбон, гидроген и оксиген.

Разновидности простых липидов

Они делятся на три группы:

  • Алкилацилаты (воски). Это сложные эфиры высших жирных кислот и одно- или двухатомных спиртов.
  • Триацилглицерины (жиры и масла). Строение липидов этого вида предусматривает наличие в составе глицерина (трехатомного спирта) и остатков высших жирных кислот.
  • Церамиды. Сложные эфиры сфингозина и жирных кислот.

Сложные липиды

Вещества данной группы состоят не из трех элементов. Помимо них, они включают в свой состав чаще всего сульфур, нитроген и фосфор.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).

Роль липидов в организме

Строение и функции липидов взаимосвязаны. Благодаря тому, что в их молекулах одновременно присутствуют полярные и неполярные структурные фрагменты, эти вещества могут функционировать на границе раздела фаз.

Липиды обладают восемью основными функциями:

  1. Энергетическая. За счет окисления этих веществ организм получает более 30 процентов всей необходимой ему энергии.
  2. Структурная. Особенности строения липидов позволяют им быть важной составляющей оболочек. Они входят в состав мембран, выстилают различные органы, образуют мембраны нервных тканей.
  3. Запасающая. Данные вещества являются формой сбережения организмом жирных кислот.
  4. Антиокисдантная. Строение липидов позволяет им выполнять и такую роль в организме.
  5. Регуляторная. Некоторые липиды являются посредниками гормонов в клетках. Кроме того, из липидов формируются некоторые гормоны, а также вещества, стимулирующие иммуногенез.
  6. Защитная. Подкожная прослойка жира обеспечивает термическую и механическую защиту организма животного. Что касается растений, то из восков формируется защитная оболочка на поверхности листьев и плодов.
  7. Информационная. Липиды ганглиозиды обеспечивают контакты между клетками.
  8. Пищеварительная. Из липида холестерина формируются участвующие в процессе переваривания пищи.

Синтез липидов в организме

Большинство веществ этого класса синтезируются в клетке из одного и того же исходного вещества — уксусной кислоты. Регулируют обмен жиров такие гормоны, как инсулин, адреналин и гормоны гипофиза.

Существуют также липиды, которые организм не способен производить самостоятельно. Они обязательно должны попадать в организм человека с пищей. Содержатся они в основном в овощах, фруктах, зелени, орехах, злаках, подсолнечном и оливковом маслах и других продуктах растительного происхождения.

Липиды-витамины

Некоторые витамины по своей химической природе относятся к классу липидов. Это витамины А, D, Е и К. Они должны поступать в организм человека с пищей.

в организме
Витамин Функции Проявление недостатка Источники
Витамин А (ретинол) Участвует в росте и развитии эпителиальной ткани. Входит в состав родопсина — зрительного пигмента. Сухость и шелушение кожи. Нарушение зрения при плохом освещении. Печень, шпинат, морковь, петрушка, красный перец, абрикосы.
Витамин К (филлохинон) Участвует в обмене кальция. Активирует белки, ответственные за свертывание крови, принимает участие в формировании костной ткани. Окостенение хрящей, нарушение свертываемости крови, отложение солей на стенках сосудов, деформация костей. Дефицит витамина К случается очень редко. Синтезируется бактериями кишечника. Также содержится в листьях салата, крапивы, шпината, капусты.
Витамин D (кальциферол) Принимает участие в обмене кальция, формировании костной ткани и эмали зубов. Рахит Рыбий жир, желток яиц, молоко, сливочное масло. Синтезируется в коже под воздействием ультрафиолета.
Витамин Е (токоферол) Стимулирует иммунитет. Участвует в регенерации тканей. Защищает мембраны клеток от повреждений. Повышение проницаемости мембран клеток, снижение иммунитета. Овощи, растительные масла.

Вот мы и рассмотрели строение и свойства липидов. Теперь вы знаете, какими бывают эти вещества, в чем заключаются отличия разных из групп, какую роль липиды выполняют в организме человека.

Заключение

Липиды — сложные органические вещества, которые делятся на простые и сложные. Они выполняют в организме восемь функций: энергетическую, запасающую, структурную, антиоксидантную, защитную, регуляторную, пищеварительную и информационную. Кроме того, существуют липиды-витамины. Они выполняют множество биологических функций.

Похожие публикации