Интернет-журнал дачника. Сад и огород своими руками

Организмы и их роль в почвообразовании. Организмы и их роль в почвообразовании и плодородии почв Роль в почвообразовании

Основное значение в почвообразовании принадлежит зеленым растениям, особенно высшим. Прежде всего, их роль заключается в том, что образование органического вещества связано с фотосинтезом, который осуществляется только в зеленом листе растения. Поглощая углекислоту воздуха, воду, азот и зольные вещества из породы (впоследствии превращающейся в почву), зеленые растения, используя лучистую энергию солнца, синтезируют разнообразные органические соединения.

После отмирания растений созданное ими органическое вещество поступает в почву и тем самым ежегодно снабжает ее элементами зольной и азотной пищи и энергией. Количество аккумулированной солнечной энергии в синтезированном органическом веществе весьма велико и составляет примерно 9,33 ккал на 1 г углерода. При ежегодном опаде растительных остатков от 1 до 21 т на 1 га (соответствует 0,5-10,5 т углерода) в них концентрируется около 4,7-106 - 9,8-107 ккал солнечной энергии. Это поистине огромные размеры энергии, которая используется в ходе почвообразования.

Различные виды зеленых растений - деревянистые и травянистые - различаются по количеству и качеству созданной ими биомассы и размерам поступления ее в почву.

У деревянистых растений ежегодно отмирает только часть органической массы, образовавшейся за лето (хвоя, листва, ветки, плоды), и обогащение почвы органическим веществом идет преимущественно с поверхности. Другая же часть, нередко более значительная, остается в живом растении, являясь материалом для утолщения стебля, ветвей и корней.

У травянистых однолетних растений вегетативные органы существуют один год и растение ежегодно отмирает, за исключением созревших семян; у многолетних травянистых растений остаются подземные побеги с узлами кущения, корневища и т.д., из которых на следующий год развивается новая надземная часть растения с новой корневой системой. Поэтому травянистая растительность приносит в почву органическое вещество в виде ежегодно отмирающей надземной части и корней. Мхи, которые не имеют корневой системы, обогащают почву органическим веществом с поверхности.

Характер поступления растительных остатков в почву определяет дальнейший ход преобразования органических соединений, их взаимодействие с минеральной частью почвы, что сказывается на процессах формирования почвенного профиля, составе и свойствах почвы.

Наибольшее накопление органического вещества происходит в лесных сообществах. Так, в еловых лесах северной и южной тайги общая биомасса составляет 100-330 г. на 1 га, в сосняках - 280, в дубравах - 400 т на 1 га. Еще большая масса органического вещества образуется в субтропических и влажных вечнозеленых тропических лесах - более 400 т на 1 га.

Травянистая растительность характеризуется значительно меньшей продуктивностью. Северные луговые степи наращивают биомассу до 25 т на 1 га, в сухих степях она составляет 10 т, а в полукустарниковых пустынных степях эта величина снижается до 4,3 т.

В арктических тундрах биомасса находится на уровне пустынных сообществ, а в кустарниковых тундрах достигает уровня луговых степей.

Размеры поступающей в почву органической массы обусловлены видом растительности и годовым количеством опада, который зависит от прироста и соотношения надземной массы и корней. Так, в еловом лесу средний годовой растительный опад составляет 3,5-5,5 т на 1 га, в сосняке - 4,7, в березняке - 7,0, в дубняке - 6,5 т на 1 га.

В субтропических и тропических лесах ежегодный опад весьма велик - 21-25 т на 1 га.

В луговых степях ежегодный опад составляет 13,7 т на 1 га, в сухих степях - 4,2 т, в пустынных, полукустарниковых степях - 1,2 т. При этом основная масса - 70-87% - мертвого опада растительности луговых степей приходится на корневые системы трав. Этим в известной мере и объясняется большой запас гумуса в почве под травянистой растительностью.

Большая роль зеленых растений в почвообразовании заключается и в том, что своей жизнедеятельностью они обусловливают один из самых важных процессов - биологическую миграцию и концентрацию зольных элементов и азота в почве, а в совокупности с микроорганизмами - биологический круговорот веществ в природе.

Под лесами умеренной зоны потребление и ежегодный возврат с опадом суммы зольных элементов и азота составляют соответственно 118-380 и 100-350 кг на 1 га. При этом березняки и дубравы создают более интенсивный круговорот веществ, чем сосняки и ельники. Поэтому и формирующиеся под ними почвы будут более плодородными.

Под луговыми травянистыми ассоциациями количество зольных элементов и азота, вовлекаемого в биологический круговорот, значительно больше, чем в различных типах лесов умеренных широт, причем потребление и возврат веществ с опадом в почву уравновешены и составляют около 682 кг на 1 га. Естественно, что и почвы под луговыми степями плодороднее, чем под лесами.

На процессы разложения органических остатков большое влияние оказывает их химический состав.

Органические остатки состоят из разнообразных зольных элементов, углеводов, белков, лигнина, смол, дубильных веществ и других соединений, причем содержание их в опаде разных растений неодинаково. Все части большинства древесных пород богаты дубильными веществами и смолами, содержат много лигнина, мало зольных элементов и белков. Поэтому остатки древесных растений разлагаются медленно и преимущественно грибами. В отличие от деревьев травянистая растительность, за небольшим исключением, не содержит дубильных веществ, богаче белковыми веществами и зольными элементами, благодаря чему остатки этой растительности легко подвергаются в почве бактериальному разложению.

Кроме того, между этими группами растений существуют еще и другие различия. Так, все деревянистые растения откладывают в течение года отмершие листья, хвою, ветки, побеги, главным образом на поверхности почвы. В почвенной толще за год деревья оставляют сравнительно незначительную часть мертвого органического вещества, поскольку их корневая система многолетняя.

Травянистые же растения, у которых ежегодно отмирают все надземные вегетативные органы и частично корни, откладывают мертвое органическое вещество, как на поверхности почвы, так и на различной глубине.

Травянистую растительность подразделяют на три группы: луговая, степная и болотная.

У луговых растений - тимофеевки луговой, ежи сборной, мятлика, овсяницы, лисохвоста, различных клеверов и других многолетних трав - надземная масса отмирает ежегодно в начале зимы с наступлением устойчивых морозов.

Степная растительность отмирает большей частью летом из-за физической сухости почвы. К этому времени степная флора обычно полностью заканчивает цикл развития и дает жизнеспособные семена. Остатки растений попадают в условия недостаточной влажности почвы, т.е. в условия, противоположные тем, в которых оказывается органическая масса луговой растительности в момент отмирания. Глубокой осенью, к началу отмирания луговой растительности, все промежутки почвы, как правило, заполнены водой, и в связи с этим доступ воздуха в почву полностью прекращен. В аналогичных условиях оказываются луговые растения и в весенний период, когда почва оттаивает, при этом количество воды в почве достигает максимума, а количество воздуха - минимума. Разложение растительных остатков, следовательно, идет без доступа воздуха, медленно, что приводит к накоплению органического вещего вещества в почве.

Еще более медленно разлагаются остатки болотной растительности, испытывающие постоянное избыточное увлажнение.

Но как бы пи отличались друг от друга по тем или иным особенностям отдельные группы зеленых растений, основное значение их в почвообразовании сводится к синтезу органического вещества из минеральных соединений. Органическое вещество, играющее в плодородии почв большую роль, может быть создано только зелеными растениями .

Микроорганизмы и их роль в почвообразовании. Общие све дения. Почвообразование - биологический процесс, и в его развитии принимают непосредственное участие самые различные группы живых организмов. Среди них большое значение имеют микроорганизмы, распространенные широко в природе. Они встречаются в почве, воздухе, на высоких горах, на голых каменных скалах, в пустынях, глубинах Северного Ледовитого океана и т. д.

Особенно широкое распространение микробы имеют в почве, которая представляет единственную природную среду, где для нормального их развития существуют все необходимые условия.

Хорошая почва всегда содержит достаточное количество органических и минеральных веществ, часто имеет необходимую влажность и реакцию почвенного раствора, достаточно снабжена кислородом и защищает микроорганизмы от губительного влияния прямых солнечных лучей.

Развитие микроорганизмов в почве теснейшим образом связано с органическим веществом. Чем богаче почва растительными остатками, тем больше содержится в ней микробов (табл. 4).

В 1 г дерново-подзолистых почв содержится около 500 млн. бактерий, в 1 г каштановых-1 -1,5 млрд.; в черноземах, отличающихся высоким содержанием органического вещества, количество микроорганизмов достигает 2-3 млрд. в 1 г почвы, а в хорошо окультуренных черноземах микроорганизмов значительно больше.

Несмотря на ничтожно малый размер микробов, общий вес их в почвах достигает значительной величины. Так, если принять в среднем размеры клеток равными 1 X 2 микрона и количество их в 1 г почвы 5 млрд., то в 25-сантиметровом слое 1 га почвы живой вес микробов составит около 1-3 т.

Особенно богаты микроорганизмами культурные, хорошо обрабатываемые и удобряемые навозом почвы.

Вся эта масса микробов в почвенной толще распределена неравномерно. Наиболее богаты микроорганизмами поверхностные горизонты до глубины 25-35 см; по мере углубления число микробов становится все меньше и меньше, а на значительной глубине они встречаются в ничтожном количестве. Большое влияние на распределение микрофлоры в почвенной среде оказывает корневая система растений. Корни постоянно выделяют во внешнюю среду различного рода органические соединения, служащие хорошим источником питания для микроорганизмов; в прикорневой зоне растений обычно имеются благоприятные условия для микроорганизмов. Эта зона называется ризосферой. В ризосфере, как показывают многие исследования, число микробов в десятки и сотни, а иногда и в тысячи раз больше, чем вне зоны корней. Микробы покрывают корневую систему растений почти сплошным слоем.

Обильная микрофлора в ризосфере, а также и во всей почвенной толще играет большую роль в развитии почвенного плодородия. Микроорганизмы могут интенсивно развиваться только при определенных температурных условиях, при соответствующих влажности и реакции среды.

Большое значение для их жизнедеятельности имеет температурный режим.

Опыты показывают, что минимальная температура, при которой еще возможна жизнедеятельность большинства почвенных микробов, равна приблизительно + 3°. Ниже этой температуры развитие их обычно прекращается. Максимальная температура около +45°. Что же касается оптимальной температуры, то она находится чаще всего в пределах +20-35°.

Влияние температуры на жизнедеятельность микроорганизмов теснейшим образом связано с влажностью. Влага в такой же степени необходимый фактор для развития микробов, как и тепло. Если температура разлагающейся массы вполне благоприятна, но влажность недостаточна или избыточна, то разложение будет затруднено.

Точно так же будет затруднено разложение, если условия влажности оптимальны, но температурные условия неблагоприятны. Процессы разложения наибольшей интенсивности достигают обычно при влажности почвы около 60% от полной влагоемкости. В соответствии с этим и разложение растительных остатков в природе на протяжении года протекает неравномерно.

Наиболее энергично разложение совершается чаще всего в первую половину лета, когда тепловые условия и влажность находятся в наиболее благоприятном сочетании. В жаркие летние месяцы, когда почва сильно пересыхает, жизнедеятельность микроорганизмов снижается и процесс разложения сводится к минимуму. Разложение замедляется также по мере уменьшения тепла в осенний период, а с наступлением морозов этот процесс совсем прекращается.

Что касается реакции среды, то различные группы микроорганизмов в этом отношении предъявляют различные требования. Так, все бактерии могут развиваться только в нейтральной, слабокислой или слабощелочной среде. Кислая реакция действует на бактерии угнетающе. Сильнейшим препятствием для жизнедеятельности бактерий являются также дубильные вещества, содержащиеся в древесной растительности.

Грибы, наоборот, свободно мирятся и с ясно выраженной кислой реакцией. В отличие от бактерий’ грибы хорошо развиваются на растительных остатках, содержащих дубильные вещества.

С жизнедеятельностью микроорганизмов связаны разложение отмерших растений и животных и превращение их в перегной, или гумус, процессы минерализации органического вещества, фиксации атмосферного азота, процессы аммонификации, нитрификации, денитрификации и процессы синтеза сложных органических соединений.

Большое значение имеют микроорганизмы в разрушении и синтезе минералов, а также в регулировании окислительно-восстановительных условий в почве.

В состав огромного микроскопического населения почвы входят бактерии, актиномицеты, грибы, водоросли, простейшие (protozoa ) и различные ультрамикроскопические существа - фаги, бактериофаги и актинофаги.

Бактерии. Бактерии составляют самую обильную и разнообразную группу почвенной микрофлоры; это - микроскопические одноклеточные организмы, которые обладают клеточной оболочкой, богаты нуклеопротеидами и лишены хлорофилла и пластид. Бактерии не имеют клеточного ядра и размножаются простым делением. По размеру бактерии очень невелики, обычно они не превышают нескольких микрон. Они имеют различную форму - круглую, палочковидную и изогнутую.

По типу питания бактерии подразделяются на две группы - автотрофные и гетеротрофные.

По отношению к воздуху бактерии делятся на аэробные и анаэробные. Аэробные бактерии могут развиваться только в условиях свободного доступа воздуха, анаэробные - не требуют для дыхания молекулярного кислорода. Среди анаэробов имеются условные, факультативные, бактерии, которые могут развиваться как без кислорода, так и в его присутствии, и безусловные, облигатные, микробы, которые могут жить и размножаться только при отсутствии свободного доступа воздуха.

Автотрофные бактерии используют для питания только углерод из углекислоты и не нуждаются в сложных органических веществах. Для превращения углерода углекислоты в органические соединения своего тела они используют или солнечную энергию (фотосинтез), или химическую энергию окисления ряда минеральных веществ (хемосинтез).

К категории бактерий, обладающих способностью фотосинтеза, относятся только цветные, зеленые и пурпурные серобактерии. Значительно шире развито в природе питание микробов при помощи хемосинтеза. Наиболее распространенными в почве хемотрофными бактериями являются нитрифицирующие, железобактерии, тионовые и водородные бактерии.

Большое значение в почвообразовании имеют нитрифицирующие бактерии, с которыми связан процесс нитрификации.

Процесс нитрификации, т. е. процесс превращения аммиака в соли азотной кислоты, совершается под воздействием двоякого рода бактерий. Одни из них (Nitrosomonas , Nitrocystus , Nitrosospira ) окисляют аммиак до азотистой кислоты: 2 NH +3 O 2 =2 HNO 2 +2 H 2 O + 158 ккал. Другие бактерии (Nitrobacter ) продолжают реакцию окисления, в результате чего образуется азотная кислота: 2 HNO 2 + O 2 = 2 HNO 3 + 48 ккал.

Азотная кислота, встречаясь в почве с различными основаниями, тотчас же дает ряд азотнокислых солей: NaNO 3 , KNO 3 и Ca ( NO 3 ) 2 . Соли азотной кислоты являются наиболее удобной формой азотного питания растений, поэтому процесс нитрификации имеет большое производственное значение.

Следует заметить, что нитрификация в почвах протекает при совместной, а не последовательной деятельности отмеченных выше нитрифицирующих микробов, поэтому в почвах и не удается обнаружить значительного содержания солей азотистой кислоты.

Процесс нитрификации лучше всего развивается в хорошо аэрируемых почвах с нейтральной или щелочной реакцией (рН от 6,2 до 9) при наличии значительного количества перегноя и достаточного содержания влаги. Анаэробные условия и кислая среда губительны| для нитрифицирующих бактерий.

Рациональная механическая обработка почвы, известкование кислых почв, внесение удобрений - важнейшие мероприятия, с помощью которых можно создавать наиболее благоприятные условия для нитрификации. Нитрификация является окислительным процессом, поэтому аэрация - необходимое условие интенсивного образования азотных солей в почве.

Серобактерии, к которым относятся Thiobacillus thiooxydans , Thiobacillus thioparus и др., вызывают процесс сульфофикации, т. е. окисление сероводорода до серной кислоты. Процесс сульфофикации осуществляется в две стадии - окисление сероводорода до серы и окисление серы до серной кислоты:

Образующаяся в этом процессе серная кислота, встречаясь в почве с различными основаниями, переходит в соли серной кислоты, из которых растения и берут для питания серу.

Все серобактерии являются аэробами, поэтому условия, благоприятствующие процессу нитрификации, способствуют в то же время и процессу сульфофикации. Чем рыхлее почва я чем благоприятнее в ней условия газообмена, тем энергичнее происходит превращение H 2 S в серную кислоту. В почвах плохо аэрируемых, уплотненных, лишенных притока воздуха процесс сульфофикации уступает место так называемому процессу десульфофикашш, при котором особого рода анаэробными бактериями соли серной кислоты восстанавливаются обратно до H 2 S .

Железобактерии представлены в почвах главным образом нитевидными (Crenothrix , Leptothrix ) и одноклеточными (Gallionella , Siderocapsa ) бактериями. С жизнедеятельностью железобактерий связан процесс окисления закисных солей железа в окисные:

Некоторые железобактерии способны окислять также соли марганца, образуя при этом железомарганцовые конкреции в почве.

Гетеротрофные бактерии усваивают углерод из органических соединений, поэтому они могут развиваться только при наличии органических веществ. Они представлены в почвах разнообразными физиологическими группами, в своей совокупности осуществляющими процесс разрушения всех органических соединений до стадии полной их минерализации. С жизнедеятельностью гетеротрофных бактерий связаны процессы аммонификации, маслянокислого брожения, брожения пектиновых веществ, целлюлозы, разложения белков, денитрификации и десульфофикации.

К этой же категории микроорганизмов относятся и азотфиксирующие бактерии, играющие огромную роль в круговороте азота в природе. По отношению к кислороду воздуха гетеротрофы делятся на аэробные и анаэробные бактерии.

Аммонификация, т. е. процесс разложения органических азотистых веществ с образованием аммиака, вызывается жизнедеятельностью весьма разнообразных групп микроорганизмов. Аммиак выделяется при разложении белков, пептонов, аминокислот, мочевины, мочевой и гипуровой кислот.

Типичными представителями аммонифицирующих бактерий являются Bact . vulgare , Bact . putidum , Bact . subtilis , Bact . mesentericus и Bact . mycoides .

Первой стадией распада белка является гидролиз с образованием свободных аминокислот; часть из них используется микробами на построение тела, другая часть может подвергнуться дальнейшему разложению с отщеплением азота в форме аммиака.

Химически этот процесс может быть выражен следующей схемой:

Процесс аммонификации белков может идти как в аэробных, так и в анаэробных условиях. Гидролитический распад мочевины протекает преимущественно в аэробных условиях под влиянием главным образом следующих бактерий: Micrococcus ureae , Saroina ureae , Urobacterium pasteurii , Urobacillus miquelii и др.

Схематически процесс аммиачного брожения мочевины можно представить следующим образом:

Образующийся при этом углекислый аммоний, как вещество химически непрочное, легко затем распадается на углекислоту, воду и аммиак:

Встречаясь в почвенных условиях с различными кислотами, аммиак вступает с ними в реакцию и образует аммонийные соли. Так, например, в случае взаимодействия аммиака с серной кислотой может образоваться сульфат аммония:

Азот в виде аммиачных соединений вполне доступен для питания растений. Так как процесс аммонификации совершается аэробными и анаэробными микроорганизмами, то образование аммиачного азота может происходить и в почвах, хорошо аэрируемых, и в почвах уплотненных, с затрудненным газообменом.

Необходимо при этом отметить, что накопление аммиака в почве и дальнейший процесс его окисления или нитрификации имеют место в том случае, когда отношение С к N в разлагающемся материале меньше 20:1; при отношении С к N больше 20:1 весь образующийся аммиак перехватывается микроорганизмами, разлагающими безазотистые органические вещества, и используется ими для построения белка своей плазмы. Наличие в почве большого количества неразложившегося органического вещества, богатого углеводами (например, соломы), тормозит накопление аммиака в почве (Л. Н. Александрова).

Распад углеводов происходит под влиянием маслянокислых бактерий Clostridium pasteurianum , Clostridium butricum и др.

Маслянокислое брожение сопровождается образованием масляной кислоты, углекислоты и водорода:

Брожение целлюлозы вызывается жизнедеятельностью специфических целлюлозоразлагающих бактерий, типичными представителями которых является Cytophaga hutchinsonii , Вас. omelianskii и др.

Биохимический процесс распада целлюлозы или клетчатки происходит как в аэробных, так и в анаэробных условиях.

Брожение пектиновых веществ, представляющих собой межклеточные вещества растительных тканей, протекает в аэробных и анаэробных условиях под влиянием пектиноразлагающих бактерий Clostridium pectinovorum и др.

Гидролитический распад жиров происходит под воздействием микроорганизмов, обладающих ферментом липазой. Наиболее энергичными разрушителями жиров являются Pseudomonas . fluorescens и Bact . pyocyaneum .

Весьма распространенными микроорганизмами в почве являются денитрифицирующие бактерии, вызывающие процесс денитрификации - восстановления нитратов до свободного азота.

Наиболее энергичными денитрификаторами являются преимущественно неспороносные бактерии Pseudomonas fluorescens , Bact . stutzeri , Bact . denitrificans и др.

Денитрифицирующие бактерии принадлежат к факультативным анаэробам, которые хотя и могут развиваться в присутствии кислорода воздуха, однако интенсивнее развиваются при затрудненном доступе воздуха или даже при полном его отсутствии. Не получая кислорода воздуха или получая его в ограниченном количестве, эти бактерии отнимают его от нитратов и нитритов и окисляют им безазотистые органические вещества. Часть выделяющегося при этом азота безвозвратно улетучивается в атмосферу, другая же часть идет на построение плазмы денитрификаторов.

Для земледелия денитрификация в большинстве случаев вредна, поскольку она связана с потерей азота - важнейшего для растений питательного элемента. Однако интенсивно развиваться этот процесс может лишь в почвах с плохой воздухопроницаемостью, уплотненных и заболоченных. В почвах же культурных и хорошо обрабатываемых жизнедеятельность денитрифицирующих бактерий сильно угнетается и отрицательная их роль не проявляется.

Бактерии, ассимилирующие атмосферный азот. Большое значение в накоплении азотных соединений в почвах имеет процесс фиксации, или связывания, атмосферного азота.

Сущность этого процесса заключается в том, что определенная группа бактерий, так называемых фиксаторов азота, связывает свободный азот атмосферы и, превращая его в сложные соединения своего тела, тем самым обогащает им почвенную толщу. Таким образом, наряду с процессами разложения сложных органических азотных веществ в почве происходят и процессы созидания, или синтеза, азотистых соединений за счет свободного азота атмосферы.

Отметим, что запасы азота в атмосфере практически неисчерпаемы. Над каждым квадратным метром поверхности земли висит столб газообразного азота весом в 8 т. Между тем атмосферный азот непосредственно высшим растениям совершенно недоступен, он может быть использован только после предварительного связывания его специальными азотфиксирующими микроорганизмами.

В почве существуют две группы азотфиксирующих микробов. Одни из них, так называемые клубеньковые бактерии (Bacterium radicicola ), способны развиваться только на корнях различных бобовых растений, другие же свободно живут в почвенной среде.

Из свободно обитающих микробов одни являются аэробными (Azotobacter chroococcum ), другие - анаэробными организмами (Clostridium pasteurianum ).

Наибольшее значение в земледелии имеют клубеньковые бактерии и из свободно живущих - Azotobacter , что же касается бактерий другого вида - Clostridium pasteurianum , то они, будучи анаэробными, в культурных, хорошо обрабатываемых почвах обычно угнетаются, вследствие чего и роль их в накоплении азота в почве сравнительно незначительна.

Клубеньковые бактерии, способные жить только в симбиозе с бобовыми растениями, представлены в почвах несколькими видами. Каждый вид клубеньковых бактерий может развиваться только на одном определенном виде или на нескольких видах бобовых растений. При благоприятных условиях, как показывают наблюдения, количество связываемого клубеньковыми бактериями азота может достигать 100 и даже 120 кг на гектар за один вегетационный период.

Что же касается свободно живущих бактерий (Azotobacter ), то необходимейшим условием их существования является наличие в почве перегнойных веществ как источника углеродистых соединений, из которых данные организмы черпают необходимую им энергию.

Общее количество азота, которое может быть накоплено в почве азотобактером на протяжении лета, достигает в среднем 30-35 кг на гектар. Эти цифры весьма красноречиво говорят о той огромной роли, которую играют азотфиксирующие бактерии в плодородии почв. Накопленный в телах микроорганизмов азот подвергается в почве тем же превращениям, что и азот других органических соединений. После отмирания азотфиксирующих бактерий их тела под воздействием процессов аммонификации и нитрификации разлагаются и заключенный в них азот переходит в аммонийные и затем в нитратные соединения, которые и служат пищей для растений.

Грибы. Наряду с бактериями большое участие в почвообразовательных процессах принимают грибы, которые являются гетеротрофными сапрофитными организмами, питающимися готовым органическим веществом.

Грибная микрофлора в почвах весьма разнообразна и представлена большим количеством видов. Наиболее распространенными из них являются плесневые грибы, которые размножаются или путем образования конидий из конидиеносцев, или спорангиев, на особых утолщенных клетках. К группе плесневых грибов принадлежат представители родов Penicillium , Trichoderma , Aspergillus , Cladosporium , Rhizopus .

Значительно распространены в почвах также грибы-водоросли (Phycomycetes ), сумчатые грибы (Ascomycetes ), в том числе дрожжевые грибы (Saccharomycetes ), а затем высшие (Basidio mycetes ) и несовершенные грибы (Fungi imperfecti ).

Многие виды грибов способны образовывать на корнях зеленых растений микоризу, обусловливая особый микотрофный тип корневого питания растений.

Микоризой обычно называется сожительство многих растений с особыми почвенными грибами, получившими название микоризных грибов. Различают эктотрофную, или наружную, микоризу и эндотрофную, или внутреннюю, микоризу; гифы гриба эктотрофной микоризы распространяются преимущественно на поверхности корня, образуя около него как бы особый чехол; гифы гриба эндотрофной микоризы проникают внутрь корня, распространяясь в его тканях.

В этом симбиозе грибы микоризы используют углеводы, в частности сахар, а также некоторые оксикислоты и аминокислоты, поступающие из листьев в корни растений, и в то же время снабжают зеленые растения азотом, поскольку грибы способны усваивать питательные вещества, в том числе и азот, непосредственно из органических соединений почвенного перегноя, лесной подстилки и полуразложившихся торфянистых остатков.

Наиболее широко распространены микоризные грибы среди древесных растений, при этом для каждого вида растений характерен особый вид гриба. Так, гриб Boletus elegaus дает микоризу у лиственницы и встречается только там, где произрастает это дерево; Boletus luteus поселяется на корнях сосны и т. д.

Вся грибная микрофлора отличается довольно высокой потребностью в кислороде, поэтому наиболее богаты грибами поверхностные слои почвы. Большинство грибов развивается при температуре от 5 до 40°, имея оптимум около 25-30°. Существенной особенностью грибов является то, что они хорошо развиваются как в нейтральной, так и в кислой среде, поэтому разложение древесных остатков в лесу, отличающихся кислой реакцией, происходит главным образом под влиянием грибной микрофлоры.

С жизнедеятельностью грибной микрофлоры в почве связаны многообразные процессы разложения клетчатки, жиров, лигнина, белков и других органических соединений. В разложении клетчатки наибольшее участие принимают грибы из родов Trichoderma , Aspergillus , Fusarium и другие; из грибов, разлагающих пектин, могут быть названы Mucor stolonifer , Aspergillus niger , Cladosporium и другие; многие плесени (Oidium lactis , разные виды Aspergillus и Penicillium ) энергично разлагают жиры,

Углеводороды с открытой цепью, а также углеводороды ароматического ряда под влиянием ряда грибов окисляются до СО 2 и Н 2 О; многими плесневыми и несовершенными грибами вызывается аммонификация белков. Особенно большую роль играют грибы в образовании и разложении перегнойных веществ, составляющих наиболее существенную часть почвы.

Актиномицеты. Большое распространение в почвах имеют актиномицеты, или лучистые грибы (Actynomycetes ), представляющие собой переходную форму между бактериями и грибами (табл. 5).


Характерной особенностью актиномицетов является одноклеточный ветвистый мицелий, имеющий две части: одна из них погружена в питательный субстрат, а другая поднимается вверх в виде воздушного мицелия, на котором образуются споры. Колонии актиномицетов часто пигментированы и окрашены в розовые, красные, зеленоватые, бурые и черные цвета.

Все актиномицеты относятся к типичным аэробам и лучше всего развиваются при температуре 30-35°. Среди них значительно распространены антагонисты, угнетающие развитие бактерий путем выделения антибиотиков.

Роль актиномицетов в почвообразовательных процессах весьма значительна. Они принимают активное участие в разложении безазотистых и азотистых органических веществ, в том числе и наиболее стойких соединений, входящих в состав почвенного перегноя, или гумуса.

Водоросли. Среди почвенной микрофлоры значительное место занимают водоросли. Чаще всего в почве встречаются жгутиковые водоросли (Flagellatae ), зеленые водоросли (Chlorophy сеае), сине-зеленые (Cyanophyceae ) и диатомовые водоросли (Diatomeae ). На поверхности почвы, а также в пахотном слое глубиной 30 см количество клеток водорослей может достигать 100 тыс. в 1 г почвы.

Водоросли активно участвуют в процессах выветривания горных пород и минералов, например каолинита, разлагая его на свободные окислы кремния и алюминия.

Будучи организмами, содержащими хлорофилл, они способны к фотосинтезу и при своем развитии обогащают почвенный слой некоторым количеством органического вещества.

Сине-зеленые водоросли (Nostoc , Phormidium ) способны усваивать газообразный азот. В этом отношении они представляют интерес для сельского хозяйства. Вместе с тем обильное развитие водорослей обогащает почву углеводами и стимулирует развитие в ней азотфиксирующих бактерий типа азотобактера.

Лишайники. Наряду с бактериями, грибами и водорослями значительное участие в почвообразовательных процессах принимают лишайники, которые представляют собой сложные симбиотические организмы, состоящие из гриба и водоросли.

Лишайники способны произрастать непосредственно на камнях и скалах, поэтому они обычно являются пионерами растительной жизни на обнаженной поверхности горных пород. Наиболее распространенными из них являются накипные, или корковые, затем листоватые и кустистые лишайники. Большинство лишайников обладает способностью внедряться в толщу горной породы при помощи гиф гриба и вызывает активное разрушение всех горных пород, выходящих на дневную поверхность. К ним принадлежат Rhizocarpon geographicum , различные виды Lecarona , Aspicilia , Halmatomma и др. Большое распространение имеют лишайники родов Cladonia , Alectoria и другие в тундре, в лесной зоне и высокогорных областях.

Развиваясь на магматических, в особенности на богатых кремнеземом породах, лишайники образуют на их поверхности весьма характерные, пестро окрашенные покровы красного, желтого, черного, серого, бурого и других цветов.

Лишайники выделяют углекислоту и специфические лишайниковые кислоты, вызывающие разрушение минералов; многие лишайники образуют антибиотики, угнетающие развитие бактерий.

В результате жизнедеятельности лишайников на поверхности горных пород образуется тонкий слой примитивной почвы, в которой накапливается некоторое количество перегноя, а также фосфора, калия, серы и других элементов. На этой примитивной почве поселяются скальные мхи, а в дальнейшем и некоторые высшие зеленые растения.

Простейшие ( Protozoa ). Широкое распространение в почве имеют представители простейших животных организмов, получивших общее название Protozoa . К ним относятся корненожки

( Rhizopoda ), жгутиковые ( Flagellata ) и ресничные, или инфузории (Ciliata ). Большинство простейших - аэробы, и только немногие из них являются анаэробами.

Наиболее благоприятные температурные условия для их развития лежат в пределах 18-22°, наилучшая реакция - нейтральная, однако хорошее развитие простейших наблюдается также и при кислой реакции. По способу питания простейшие являются большей частью гетеротрофами; они питаются преимущественно другими организмами - бактериями, водорослями, а также зародышами грибов и другими микроорганизмами.

Среди простейших имеются сапрофитные организмы, в частности жгутиковые и некоторые инфузории, питающиеся растворимыми органическими веществами. Среди жгутиковых имеются автотрофные простейшие. Некоторые представители простейших живут в симбиозе с зелеными водорослями. Распространены простейшие преимущественно в поверхностном 15-сантиметровом слое почвы. В 1 г почвы их насчитывается до 1,5 млн. Чем богаче почва органическим веществом, тем больше в ней простейших, в особенности амеб.

В процессе жизнедеятельности простейшие превращают сложные органические соединения в более простые и тем способствуют увеличению в почве запаса доступнее высшим растениям веществ. Нередко в почвах, богатых амебами, обнаруживают больше растворимых соединений азота, чем в аналогичных почвах, менее населенных амебами.

Животные и их роль в почвообразовании. В почве живет большое количество беспозвоночных и позвоночных животных, принимающих постоянное и активное участие в почвообразовательных процессах.

Существенное значение в этом отношении имеют прежде всего представители беспозвоночных - личинки различных насекомых, муравьи, а в особенности дождевые черви, которые, измельчая органические остатки и пропуская их вместе с минеральными частицами почвы сквозь пищеварительный аппарат, часто производят весьма глубокие изменения в химических и физических свойствах почв.

О значении в почвообразовательном процессе населяющих почву различного рода животных красноречиво говорит, например, тот факт, что одни лишь дождевые черви способны пропустить ежегодно через свой организм несколько тонн почвенной массы на участке 1 га. Отсюда следует, что задолго до обработки почвы земледельческими орудиями она непрерывно «перепахивалась» червями. Эти низко организованные существа играют важную роль в развитии почв. В окультуренных поливных сероземах, по исследованиям Н. А. Димо, дождевые черви выбрасывают ежегодно на поверхность 1 га около 123 т переработанной почвы.

Экскременты червей, или копролиты, представляют собой хорошо склеенные, водопрочные комочки почвы, обогащенные микроорганизмами, органическим веществом, азотом, кальцием и другими элементами. Таким образом, дождевые черви не только улучшают физические свойства почвы, - порозность, аэрацию, водопроницаемость, но в известной степени и ее химический состав.

Значительную работу в этом отношении производят и другие животные. Кроты, мыши, хомяки, суслики и другие, проделывая в почве различные ходы - кротовины - и смешивая органические вещества с минеральными, заметным образом повышают водо- и воздухопроницаемость почвы, что, несомненно, усиливает и ускоряет процессы разложения растительных остатков, и создают своеобразный бугорковый микрорельеф, весьма характерный для степных районов.

Таким образом, роющие и копающие животные постоянно рыхлят, перемешивают и перемещают почву, что, несомненно, самым заметным образом отражается на интенсификации процессов разложения органических остатков, а также на выветривании ее минеральной части.

Представление об участии животных в разложении органических веществ станет еще более полным, если принять во внимание, что растительность служит пищей для различных травоядных и что, прежде чем попасть в почву, значительная часть органических остатков подвергается существенной переработке в пищеварительных органах животных.

Зеленые растения и их роль в почвообразовании. Основная роль в образовании почвы принадлежит зеленым растениям, которые, используя солнечную энергию, синтезируют органическое вещество путем усвоения углекислоты воздуха, воды, соединений азота и зольных элементов почвы. Поступающие в почву остатки отмерших растений становятся пищей микроорганизмов, которые в процессе жизнедеятельности синтезируют почвенный перегной и образуют минеральные и органо-минеральные соединения, служащие в свою очередь источником пищи для новых поколений зеленых растений.

С растительностью теснейшим образом связано расчленение почвенного профиля на горизонты.

Благодаря способности выделять корнями углекислоту и ряд органических кислот растения усиливают процесс выветривания трудно растворимых минералов и тем самым способствуют образованию в почвенной толще легкоподвижных соединений.

Велико значение растительного покрова и как фактора, способного изменять климатические условия на самых незначительных пространствах и в сильной степени препятствовать развитию процессов эрозии, т. е. смыва и выдувания почв.

Таким образом, в результате жизнедеятельности зеленой растительности на материках земного шара развиваются почвы, заключающие в себе перегной, или гумус, минеральные и органоминеральные соединения.

Зеленые растения подразделяются на древесные и травянистые.

Древесные растения - многолетние, продолжительность их жизни нередко измеряется десятками лет, а иногда и многими столетиями.

Характерной особенностью древесных растений является то> что у них ежегодно отмирает только часть органической массы, образовавшейся за лето. Другая же часть, нередко более значительная, остается в живом растении, являясь материалом для роста стебля, ветвей и корней. Отмершие остатки в виде листьев, хвои и веток откладываются преимущественно на поверхности почвы, образуя слой лесной подстилки. В почвенной же толще деревья оставляют сравнительно незначительную часть мертвого органического вещества, поскольку их корневая система является многолетней.

Травянистая растительность обладает большой сетью тонких, густо пронизывающих почву корней, после отмирания которых почвенная масса обогащается значительным количеством органического вещества. У однолетних травянистых растений все вегетативные органы обычно существуют только один год, растения ежегодно целиком отмирают, за исключением лишь созревших семян.

Отмирающие растения откладывают мертвое органическое вещество как на поверхности почвы, так и в ее массе на различной глубине. Благодаря этому процессы разложения протекают непосредственно в почвенной толще, и почва ежегодно обогащается перегноем и элементами зольной и азотной пищи.

Своеобразную роль в почвообразовании играют мхи, широко встречающиеся под пологом леса, на болотах. Мхи лишены корневой системы и усваивают питательные вещества всей поверхностью органов, прикрепляясь к субстрату волооковидными образованиями, или ризоидами.

Мхи отличаются огромной влагоемкостью. Там, где они поселяются, создается анаэробиозис, замедляются процессы разложения органических остатков и начинаются заболачивание и накопление торфа.

Рассмотренные особенности, присущие той или иной группе зеленых растений, непосредственно сказываются на почвообразовательном процессе, а следовательно, на характере и качестве образующихся почв.

Но как бы ни отличались па тем или иным особенностям отдельные группы зеленых растений, основное значение их в почвообразовании всегда сводится к синтезу органического вещества из минеральных соединений. Органическое же вещество, играющее в плодородии почвы большую роль, может быть создано только зелеными растениями.

Разложение органических остатков различных растительных формаций осуществляется разными микроорганизмами. В одном случае этот процесс вызывается жизнедеятельностью главным образом грибов, в другом - бактерий.

Так, древесные остатки в лесу разлагаются преимущественно при господствующем участии плесневых грибов. Бактерии здесь развиваются несколько слабее вследствие того, что древесная масса содержит в себе дубильные вещества и имеет кислую реакцию. Бактерии обычно включаются в процесс разложения древесных остатков после того, как грибы разрушат дубильные вещества, которые задерживают развитие многих групп бактерий. Для грибного разложения в лесу условия благоприятны, так как упругие древесные остатки лежат на поверхности почвы рыхло б приток воздуха к ним не ограничен.

Существенной особенностью грибного разложения древесных растительных остатков является то, что здесь образуется значительное количество фульвокислот, которые играют большую роль в развитии дерново-подзолистых почв.

Органические остатки луговой травянистой растительности при недостаточной аэрации разлагаются главным образом анаэробными бактериями. Лишь в верхних частях почвы, куда проникает кислород, происходят аэробные процессы разложения.

Анаэробное разложение протекает очень медленно. Этим объясняется тот факт, что на лугах под травяной растительностью очень часто образуется довольно мощная, оплетенная корнями, слабо разложившаяся дернина.

Точно так же под действием анаэробных микроорганизмов постепенно образуются значительные скопления торфа в болотах и на заболоченных почвах, широко распространенных в северной и центральной частях нашей страны.

В отличие от лугов и заболоченных участков все отмершие остатки степных растений разлагаются большею частью аэробными бактериями.

Объясняется это, во-первых, тем, что степная растительность отмирает летом, когда почва наиболее иссушена и хорошо аэрирована; во-вторых, отмирающая летом травяная растительность в степи не образует сплошного плотного войлока, а лежит обычно рыхлым слоем, что также не может служить препятствием для проникновения кислорода в почву.

Процесс аэробного разложения всяких органических веществ протекает весьма быстро и полно; этим и объясняется то положение, что от растений степной формации, особенно в условиях сухой степи, после их отмирания в почве обычно не остается больших отложений перегноя.

— Источник—

Гаркуша, И.Ф. Почвоведение/ И.Ф. Гаркуша.- Л.: Издательство сельскохозяйственной литературы, журналов и плакатов, 1962.- 448 с.

Post Views: 1 513

Животные населяют весь земной шар: поверхность суши, почву, пресные воды и моря. При восхождении на Джомолунгму (Эверест) альпинисты заметили на высоте около 8000 м горных птиц клушиц. Черви, ракообразные, моллюски и другие животные обнаружены в глубочайших впадинах Мирового океана вплоть до глубины 11000м. Многие животные живут скрытно или имеют микроскопические размеры, поэтому мы их не замечаем. Другие животные, напротив, постоянно встречаются нам, например насекомые, птицы, звери.

Значение в природе столь же велико, как и значение растений. Многие растения опыляются только животными, что животные играют большую роль и в распространении семян некоторых растений. К этому следует добавить, что животные наряду с бактериями принимают самое активное участие в образовании почвы. Дождевые черви, муравьи и другие мелкие животные постоянно вносят в почву органические вещества, измельчают их и тем самым способствуют созданию перегноя. норки этих роющих животных легче проникают к корням необходимые для жизни растений вода и воздух. Из ботаники вы знаете, что зеленые растения обогащают воздух кислородом, необходимым для дыхания всех живых существ. Растения служат пищей растительноядным животным, а те в свою очередь хищным. Таким образом, животные не могут существовать без растений. Но и жизнь растений, как это было сказано, зависит от жизнедеятельности животных. Очень велико санитарное значение животных - уничтожение ими трупов других животных, остатков отмерших растений и опавшей листвы. Многие водные животные очищают воду, чистота которой для жизни столь же важна, как и чистота воздуха.

Мир животных всегда имел и имеет очень важное значение для нас. Наши отдаленные предки, жившие 100-150 тыс. лет назад, знали диких зверей, птиц, рыб и других животных. Это и понятно: ведь жизнь людей во многом зависела от охоты и рыболовства. Мясо добытых животных было одним из основных источников питания, из шкур убитых зверей изготовляли одежду, из костей - ножи, скребки, иглы, наконечники копий. Сухожилия использовали при шитье шкур вместо ниток и для тетивы лука. Успех охоты зависел не только от силы и ловкости охотников. Но и от умения обнаружить гнездо птицы или логово зверя, найти нужный след. Выбрать подходящее время для облавы. Одних животных нужно было ловить в расставленные силки и сети, других - подстерегать, притаившись, третьих - с шумом преследовать всем племенем и загонять в замаскированные ямы. Человеку было также важно спасаться от хищников. Отличать ядовитых змей от безвредных. Изучив повадки диких зверей, древние люди сумели приручить некоторых из них. Первым домашним животным стала собака, которую использовали как помощника на охоте. Позднее появились домашние свиньи. Рогатый скот, домашние птицы.

С течением времени роль животных в жизни человека изменилась. Значение диких зверей в качестве источника пищи заметно снизилось, так как мясо, шерсть и молоко стали получать от домашних животных. Но у человека появились новые враги из мира животных - различные насекомые, вредившие культурным растениям. знает много примеров голодания целых народностей в результате истребления урожая полчищами саранчи. В 20 в. в результате огромного размаха хозяйственной деятельности человека - вырубки лесов. Строительства гидростанций, расширения посевных площадей и т.д. - многие дикие животные оказались в трудных условиях существования, уменьшилось их количество, некоторые виды стали редкостью, другие исчезли. Хищнический промысел истреблял ценных животных. Возникла необходимость в их охране. Известно, что животные играют очень важную роль в обеспечении населения Земли продуктами питания и сырьем для промышленности. Значительную долю продуктов питания, а также кожу, воск, шелк, шерсть и другое сырье человек получает от домашних животных. Рыболовство, особенно морское, промысел ракообразных и моллюсков также имеют важное значение для получения пищевых продуктов, витаминов. Лекарств и т.д. Из отходов промысла приготовляют кормовую муку для откорма скота и удобрения. Мех диких животных (кожа, рога, раковины и т.д.). Многие животные (например, птицы и хищные насекомые) играют большую роль в уничтожении вредителей культурных и ценных дикорастущих растений. Известно много животных, наносящих ущерб хозяйству человека. Среди них различные вредители культурных растений, животные, уничтожающие запасы продуктов, повреждающие изделия из кожи, шерсти, дерева и т.д. Существуют и такие животные. Которые вызывают различные болезни (малярию, глистные заболевания, чесотку и др.). Некоторые животные являются переносчиками болезней (вши переносят от больных к сыпной тиф, комары - малярию, блохи - чуму).

Животный мир - важная составная часть природной среды. Забота о нем служит основой его разумного использования. Зная особенности отдельных видов. Их роль в природе, человек может охранять полезных ему животных, способствовать увеличению их численности, ограничивать размножение вредителей сельского хозяйства, переносчиков и возбудителей болезней. В нашей стране заботе о животном мире придается важное значение

Роль животных в почвообразовании еще больше, чем у растений, связана с их биогеоценологической деятельностью.

Академик С. С. Шварц считал, что эволюция организмов неразрывно связана с ролью их в биогеоценозе и с эволюцией самого биогеоценоза. Экосистема, биогеоценоз определяют устойчивость вида животных к разным неблагоприятным воздействиям, изменчивость их, и даже сама проблема происхождения жизни связана именно с первичной экосистемой: условия возникновения жизни были экологическим компонентом первой экосистемы.

Связь животных с почвой и участие их в почвообразовании могут быть различными. Животные живут в самой почве, на ее поверхности, над поверхностью почвы. Часть из них меняет образ жизни в зависимости от сезона, от стадий своего развития, от наличия корма. Другие ведут лишь один образ жизни. Ясно, что оценивать роль всех этих животных следует исходя из конкретных условий их обитания.

К животным, живущим в почве, в первую очередь относятся безпозвоночные, насекомые, дождевые черви и пр. Наибольшее количество данных накоплено о деятельности дождевых червей. Уже упоминалась отмеченная Дарвином роль червей в переработке почвы, Десятисантимстровый слой садовой почвы, развитой на карбонатной породе, по Дарвину, в течение десяти лет весь проходит через кишечник червей, обогащаясь гумусом, микроорганизмами, ферментами. Черви затаскивают в почву растительные остатки. Черви делают глубокие ходы в глубь почвы, по которым проникает вода и идут корни растений. Черви оструктуривают почву, создают мелкозернистую, обогащенную гумусом массу, которая устойчива к разрушающему действию воды. Обнаружено, что у некоторых почв как, например, под байрачными лесами (леса, расположенные в балках), верхний слой чернозема целиком состоит из копролитов - комочков почвы, прошедших через пищевой тракт дождевого червя. Копролитовая структура гумусового горизонта этой почвы отличает ее от соответствующего горизонта обычного чернозема. Дождевые черви - главная причина роющей деятельности кротов, которые в поисках пищи (а черви - их главная еда) прокладывают свои ходы в почвенной толще.

Жужелицы - широко распространенные жуки, обитающие в верхнем слое почвы и на ее поверхности, как показали детальные исследования, накапливают в своем теле свинец. Если учесть, что жужелицы - хищники, то очевидна сложная трофическая связь, приводящая к такому накоплению.

Личинки двукрылых (различных мух и мушек, комариков и пр.) часто обитают в верхних почвенных слоях и участвуют в разложении подстилки. Они, так же как и черви, улучшают гумусовое состояние почвы, повышают выход гуминовых кислот, увеличивают содержание азота, аммонийных соединений, общую гумусированность. Под их влиянием нарастает мощность гумусового горизонта в начальный период его образования.

Безусловно, беспозвоночным животным сопутствует определенная микрофлора, которая усиливает ферментативную активность почв. Все беспозвоночные и их личинки прокладывают ходы, разрыхляя и перемешивая почву.

В почве обитают также некоторые виды млекопитающих. Это сурки, суслики, мыши, кроты, землеройки, хомяки и многие другие.

Их воздействие на почву весьма заметно. Кроты перемешивают почву, выбрасывают на поверхность материал из нижних горизонтов. Масса таких выбросов может составлять шестьдесят тонн на гектар. Аналогично кротам ведут себя слепыши, живущие во влажных, гидроморфных почвах степей, в лугово-черноземных, лугово-каштановых почвах по балкам. Они также выбрасывают почву на поверхность и перемешивают верхние горизонты, но в отличие от кротов они питаются растениями.

В Северной Америке живут гоферы, семейство мешетчатых крыс. Они в основном питаются орехами, кореньями, которые затаскивают в свои норы на глубину полутора метров. На поверхность почвы гоферы, как кроты, выбрасывают материал из более глубоких горизонтов. Гоферы способствуют углублению почвенной толщи, более глубокому проникновению корней растений.

Роль сурков и сусликов в почвообразовании может достигать больших масштабов и быть двойственной. Живя в степях, они роют глубокие норы и выбрасывают на поверхность почвы материал, частично обогащенный карбонатом кальция и разными растворимыми солями. По данным зоологов и почвоведов, выбросы сусликов на поверхность способствуют увеличению содержания солей в верхних слоях окружающей нору территории. Это ухудшает почву, снижает ее плодородие. Но поскольку суслики долго живут на одном месте и устраивают в почве целую систему нор, ходов, то, после того как этот участок забрасывается сусликами, он начинает оседать, образуется западина, в которую стекает вода, и в конечном счете может образоваться большая впадина с более плодородными, чем окружающие, почвами, часто темноцветными.

Особое место в почвообразовании занимают мышевидные грызуны, лемминги, полевки и пр. Они устраивают норы, тропы на поверхности почвы от норы до норы, тоннели и в подстилке и в верхних слоях почвы. У этих животных есть «туалеты», где почва изо дня в день обогащается азотом и подщелачивается. Мыши способствуют более быстрому измельчению подстилки, перемешиванию почвы и растительных остатков. В тундровых почвах главную роль играют лемминги, в лесных - мыши и кроты, в степных - слепыши, суслики, сурки.

Словом, все живущие в почве животные, так или иначе, разрыхляют, перемешивают ее, обогащают органическим веществом, азотом.

Лисицы, барсуки, волки, соболи и другие наземные животные устраивают в почве убежища - норы. Бывают целые колонии животных-норников, существующих на одном месте в течение нескольких столетий, а иногда и тысячелетий. Так, было установлено, что нора барсука около Архангельска возникла на границе раннего и среднего голоцена, то есть восемь тысяч лет назад. Под Москвой возраст норы барсука превышал три тысячи лет. Таким образом, поселения животных-норников могут быть основаны ранее даже таких древних городов, как Рим.

За долгий период существования нор можно предположить самые разные влияния животных на почву. Например, изменение состава растений около нор. Зачищая норы, животные многократно погребали почвенные гумусовые горизонты, поэтому раскопка нор позволяет проследить историю биогеоценоза в течение значительного отрезка времени.

Кабаны устраивают ночлег в укромных местах, в болотцах, в небольших лесных ручьях, в густых травах. При этом они уплотняют почву, способствуют возобновлению деревьев и оказывают всякие «мелкие услуги» лесным растениям, удобряя их, помогая в борьбе с конкурентами.

В почвах, перерытых кабанами, обычно в первый год уменьшается содержание органического вещества в слое до пяти сантиметров и увеличивается в слое пять - десять сантиметров. Кабаны создают в лесах особую экологическую нишу для деревьев, трав, животных. Иногда под влиянием кабана образуется более гумусированная, более рыхлая почва, иногда более оголенная. Случайное их распределение в пределах биогеоценоза не снимает их важной роли в его жизни. Кабаны могут служить причиной появления новой парцеллы на данном месте, а следовательно, новой почвы.

Другие крупные животные (лоси, олени) в меньшей степени влияют на почву, почти не нарушая ее. Но они часто объедают осину, обгрызая ее кору, скусывают верхушки у молодых сосен и елей. Эти действия сначала могут повлиять на растительный покров, а затем и на почвенный.

Некоторые исследователи тропических районов считают, что такие животные, как слоны, участвуют в многолетнем цикле, способствуя превращению тропического леса в саванну - сначала они уничтожают кустарники, подлесок, а затем и сами деревья. Из саванны слоны уходят, когда им не хватает пищи. После пожара, часто случающегося в саванне, она снова зарастает лесом. Ясно, что в этом цикле меняются и сами почвы и ряд их свойств (кислотность, содержание гумуса и т. п.).

Совершенно неожиданное влияние оказывают на почву тигры и медведи.

Тигры в нашей стране встречаются в основном в Уссурийском крае и приамурской тайге. Одна деталь поведения тигра имеет прямое отношение к почве. Тигр бродит на определенной территории по своим излюбленным тропам, часто проходя расстояния в несколько десятков километров. Время от времени он, как кошка, скребет лапой почву у самой тропы. При этом, конечно, сдираются трава, подстилка, обнажается разрытый когтями верхний слой почвы. Через определенное время соскреб, как называют это место зоологи, зарастает, и почва на нем, как и на порое кабана, обогащается органическим веществом и может также служить новой экологической нишей для возобновления растений.

Свои наблюдательные пункты и места отдыха тигры в Сихотэ-Алине устраивают на площадках, расположенных в высоких скалах, обычно с хорошим обзором. На этих площадках создается совершенно специфический комплекс растений, и почвы на них обычно малоразвиты и слегка уплотнены.

Не менее интересна роль медведя в процессах почвообразования. Медведь не роет берлоги, он находит для нее лишь подходящее место под вывалом дерева, под корнями и т. д. В этом смысле он не влияет на почву. Роль его в почвообразовании косвенная. Медведи прокладывают серию троп вдоль берегов рек, заросших высокой травой и кустарниками и трудно проходимых. Эти тропы используют затем другие животные, в том числе травоядные, для поиска пищи. Постепенно благодаря выпасу меняется растительность прибрежной части, иногда она зарастает лесом. А со сменой биогеоценоза, как всегда, происходит смена почв: дерновые сменяются лесными, дерново-подзолистыми или иными, аналогичными первым.

Медведи разрывают муравейники, что, конечно, вредно для леса: уничтожаются враги всяких лесных вредителей. Но этот вред не так уж велик, поскольку в естественном лесу муравейников достаточно. Часто муравейники возобновляются на том же месте, а иногда рыхлая подстилка из хвои и веток долго остается безжизненной, не зарастая травой после гибели лесного муравейника.

Охотясь за гоферами, медведи раскапывают их ходы и норы, что сопровождается разрыхлением почвы, увеличением впитывания воды, усилением гумусообразования. Скусывая верхушки ягодных побегов, медведи способствуют разрастанию ягодников и сохранению соответствующих им почв. Роль медведя в поддержании ягодников, очевидно, значительно важнее, чем это кажется на первый взгляд. Некоторые семена, пройдя через желудочный тракт медведя, теряют свою всхожесть, однако другие, наоборот, становятся более всхожими. Таким образом, медведи регулируют напочвенный покров, что соответственно передается и почвенному.

Медведи, как и волки, нужны для регулирования поголовья травоядных животных. Словом, роль медведя в биогеоценозе достаточно велика.

Птицы, насекомые, некоторые млекопитающие, например белки, куницы и т. п., составляющие большую часть биогеоценоза, обитают над почвой. Часть этих животных постоянно ведет древесный образ жизни, почти не спускаясь на землю. Но некоторые, как, например, белки, спускаются и устраивают в почве кладовки для своих запасов (орехов, семян). Весной нетронутые запасы прорастают и способствуют рассеянию растений. Аналогичную работу выполняет кедровка. На Камчатке кедровка собирает кедровые орехи в кедровом стланике, который растет в горах на высоте восемьсот - девятьсот метров над уровнем моря. Конечно, кедровка ест и семена трав, и рябину, но орехи для нее основной корм. На зиму кедровка устраивает запасы, закапывая в почву кедровые орешки, при этом очень часто эти запасники она делает в долине реки Камчатки, а не в горах, очевидно, из-за глубокого снежного покрова. Но если запасы окажутся нетронутыми, то весной они прорастают, и среди лиственничного леса образуется куртина кедрового стланика. Под стлаником в свою очередь формируется торфянисто-грубогумусная почва.

Особо следует отметить роль насекомых в биогеоценозе. Они опыляют растения, служат пищей другим животным, являясь звеном трофической цепи, разлагают органические субстраты: опад, подстилку, упавшие стволы деревьев. Насекомые ускоряют круговорот веществ в биогеоценозах. О личинках насекомых, живущих в почве, уже говорилось. Но и те, что живут над землей, могут оказать существенное влияние на почву. Часть насекомых - это так называемые фитофаги. Они питаются зеленой листвой растений. Есть ксилофаги, питающиеся древесиной.

Интересна деятельность листовертки дубовой, широко распространенной в наших лиственных лесах. Бабочка листовертки откладывает летом яички, из которых весной появляются гусеницы. Гусеницы питаются дубовыми листьями, свертывая их в трубочку (с этим связано название насекомых). В июне гусеницы окукливаются и затем из куколок вылетают бабочки. В начале июня распускаются листья дуба, и бывают годы, когда вся листва на дубах оказывается съеденной листоверткой. Дубовые леса стоят голые, как осенью. Но срабатывает природный механизм, и уже в июле дубы снова одеты листвой, при этом листья второго поколения обычно бывают более крупными, больше первого в два-три раза. Возможно, это результат того, что деревья получают удобрения в виде экскрементов листоверток. Исследования показывают, что общая масса листвы лишь процентов на десять меньше, чем масса листвы в нетронутых листоверткой лесах. Экскременты листовертки обогащают почву доступными формами азота, ферментами и гумусовыми веществами. Общее количество углерода, поступающего в конечном счете в почву, остается тем же. И хотя во время самой активной деятельности гусениц листовертки лес производит гнетущее впечатление - деревья стоят голые и слышен постоянный шорох - гусеницы поедают листья, в конечном счете листовертка ускоряет круговорот вещества в биогеоценозе.

Особое место в лесных, тундровых, болотных и пойменных биогеоценозах занимают комары. Они тоже опыляют растения, служат пищей для птиц и других насекомых, в частности стрекоз. Они концентрируют в себе некоторые микроэлементы, например молибден, и обогащают ими почву, чем стимулируют поглощение азота из атмосферы.

Многие другие не названные здесь животные влияют на почву и биогеоценоз в целом. В пустынях и полупустынях, например, муравьи выносят на поверхность несколько тонн почвенного материала из нижних горизонтов.

Специфична жизнь термитов. Они обитают в глубоких слоях почвы почти всю жизнь, питаются грубой клетчаткой, строят специальные пирамиды и тоннели.

Осы и шмели, роя норы, меняют свойства почв, влияют на впитывание воды почвой, на ее плотность.

Многообразие связей животных и почв требует исследований, и на этом пути ученых ждут интересные открытия. Очень важно знать обратную сторону связи: как почвы влияют на животных. Раньше этими вопросами занимались экологи и зоологи, изучающие условия жизни животных. Но многие вопросы были бы яснее, если бы ими занимались и почвоведы.

Биогеоценотический подход требует изучения всех многообразных связей в биогеоценозах, поэтому так важна почвенная зоология, вскрывающая роль почвы в природной системе.

В последние годы вулканолог Е. К. Мархинин выдвинул вулканическую гипотезу происхождения жизни. Он установил, что при извержении вулканов в газовом облаке образуются разные аминокислоты, синтезируются другие органические вещества. В газовом вулканическом облаке заключены громадные запасы энергии, которая может способствовать синтезу веществ типа нуклеиновых кислот.

Но еще раньше, в 30-х годах, академики Н. Г. Холодный и затем В. Р. Вильямс высказали гипотезу о зарождении жизни в почве, точнее - в рыхлом субстрате, продукте выветривания горных пород. Вильяме назвал его рухляком выветривания. В пользу этого предположения можно сказать, что жизнь как система самовоспроизводящихся единиц, которые строят себя из материала, поступающего в ограниченном количестве всего надежнее могла бы образовываться на почвенной частице, почвенной матрице, как сейчас на ней формируются полимеры гумусовых веществ. Если эта гипотеза справедлива, то можно считать, что жизнь и почва на нашей планете возникли одновременно.

Ведущая роль в почвообразовании и формировании плодородия почв принадлежит трем

группам живых организмов -- земным растениям, микроорганизмам и почвенным животным. Каждая из этих групп

организмов выполняет свою роль, но только при их совместной деятельности почвообразующая порода превращается в почву. Доминирующее положение в почвообразовании принадлежит зеленым растениям, которые извлекают из породы зольные элементы и азот, синтезируют в процессе фотосинтеза органическое вещество, которое вместе с зольными элементами через опад попадает в почву. Роль различных видов растительности существенно отличается, и это основная причина многообразия почв в природе. Микроорганизмы (бактерии, грибы, водоросли и лишайники) первыми поселяются на горной породе, активно участвуя в ее биологическом выветривании. Им принадлежит главная роль в процессах разложения растительных остатков зеленых растений и минерализации их до простых солей, доступных растениям. Они участвуют в процессах гумификации и минерализации гумуса, в разрушении и почвообразовании почвенных минералов, влияют на состав почвенного воздуха, регулируя в нем соотношение между О 2 и CO 2.

Количество, видовой состав и активность микроорганизмов зависят от плодородия почв и гидротермических условий. Наиболее распространены в почве бактерии, количество которых может доходить до 3 млрд шт. в 1 г почвы. В образовании почвы участвуют и почвенные животные, представленные нематодами, насекомыми, дождевыми червями, муравьями, кротами, грызунами и др. Все они используют органические остатки в виде пищи, способствуют ее разложению, ускоряют гумификацию растительных остатков,улучшают физические свойства почвы. Среди почвенной фауны преобладают беспозвоночные (нематоды, насекомые, черви и др.). Особую роль играют дождевые черви, которые пропускают через себя до 600 т мелкозема в год. Установлено, что многие почвы на 50, иногда на 89% состоят из полуразрушенных агрегатов, созданных червями.

Почвообразовательный процесс -- процесс формирования почв, сущность которого состоит во взаимодействии организмов и продуктов их распада с горными породами и продуктами их выветривания.

Таким образом, почвообразовательный процесс возникает на контакте литосферы и биосферы в результате их взаимопроникновения. Наряду с литосферой и биосферой источником веществ, участвующих в почвообразовательном процессе, являются атмосфера и гидросфера. Основной источник энергии почвообразовательного процесса заключается в солнечной энергии как прямой, так и конденсированной в остатках организмов, просачивающейся через почву воде и т. д. Почвообразовательный процесс очень сложен, он включает разнообразные химические, физические и, биологические явления, протекающие одновременно и в различных направлениях. Эти явления можно объединить в 3 группы -- разложение, синтез и передвижение . В почве идёт распад растительных, и животных организмов, различных минералов и обломков горных пород; в ней синтезируются особые формы органического вещества (гумус) и различные вторичные минералы (преим. глинистые минералы, минералы окислы и простые соли); продукты разложения и синтеза в виде истинных и коллоидных растворов, а также взвесей перемещаются вниз по профилю, а при близком залегании почвенно-грунтовых вод и вверх с их капиллярными и плёночными токами. Указанные основные группы процессов в свою очередь многообразны.

Похожие публикации