Интернет-журнал дачника. Сад и огород своими руками

Митохондрии особенности строения и функции таблица. Митохондрии

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Происхождение митохондрий

Межмембранное пространство

Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его толщина - 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Напротив, крупным белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся в периплазматическом пространстве, является цитохром c - один из компонентов дыхательной цепи митохондрий.

Внутренняя мембрана

Внутренняя мембрана образует многочисленные гребневидные складки - кристы, существенно увеличивающие площадь ее поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина - особого фосфолипида , содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов . Ещё одна особенность внутренней мембраны митохондрий - очень высокое содержание белков (до 70 % по весу), представленных транспортными белками , ферментами дыхательной цепи , а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы , состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ . В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи . Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Матрикс

Матрикс - ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата , жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК , РНК и собственный белоксинтезирующий аппарат митохондрии.

Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу , в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре . В целом митохондриальная ДНК кодирует 2 рРНК , 22 тРНК и 13 субъединиц ферментов дыхательной цепи , что составляет не более половины обнаруживаемых в ней белков . В частности, под контролем митохондрального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть тРНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Таким образом, суммарная реакция, катализируемая ферментами дыхательной цепи, состоит в окислении НАДН кислородом с образованием воды. По сути этот процесс заключается в ступенчатом переносе электронов между атомами металлов , присутствующих в простетических группах белковых комплексов дыхательной цепи, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. При этом сами электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая же при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. При этом считается, что в процессе транспорта по дыхательной цепи пары электронов перекачивается от трёх до шести протонов.

Завершающим этапом функционирования митохондрии является генерация АТФ , осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом с молекулярной массой 500 кДа. Этот комплекс, называемый АТФ-синтетазой, как раз и катализирует синтез АТФ путём конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ.

АТФ-синтеза

В структурно-функциональном плане АТФ-синтаза состоит из двух крупных фрагментов, обозначаемых символами F 1 и F 0 . Первый из них (фактор сопряжения F 1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы , которые вместе образуют гексамер (αβ) 3 , имеющий вид слегка приплюснутого шара. Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся осью симметрии третьего порядка с углом поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F 0 . Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F 1 .

Мембранная часть АТФ-синтазы, называемая фактором сопряжения F 0 , представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F 0 входит одна белковая субъединица типа а , две копии субъединицы b , а также от 9 до 12 копий мелкой субъединицы c . Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F 1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух гидрофобных α-спиралей, соединённых друг с другом короткой гидрофильной петлёй, ориентированной в сторону F 1 , а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F 1 в сторону F 0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.

Таким образом, в молекуле АТФ-синтазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору . «Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ) 3 , находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F 0 . Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ) 3 , соединяются с погружённым в мембрану кольцом из субъединиц c .

Способность синтезировать АТФ - свойство единого комплекса F 0 F 1 , сопряжённого с переносом протонов водорода через F 0 к F 1 , в последнем из которых как раз и расположены каталитические центры, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтазы является протонный потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного транспорта.

Сила, приводящая в движение «ротор» АТФ-синтазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 мВ и обеспечивается потоком протонов, протекающих через специальный канал в F 0 , расположенный на границе между субъединицами a и c . При этом путь переноса протонов включает в себя следующие структурные элементы:

  1. Два расположенных несоосно «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F 0 , а другой обеспечивает их выход в матрикс митохондрии;
  2. Кольцо из субъединиц c , каждая из которых в своей центральной части содержит протонируемую карбоксильную группу, способную присоединять H + из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с , обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с .

Таким образом, каталитическая активность АТФ-синтазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх каталитических субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит дискретными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.

Непосредственная функция синтеза АТФ локализована на β-субъединицах сопрягающего комплекса F 1 . При этом самым первым актом в цепи событий, приводящих к образованию АТФ, является связывание АДФ и фосфата с активным центром свободной β-субъединицы, находящейся в состоянии 1. За счёт энергии внешнего источника (тока протонов) в комплексе F 1 происходят конформационные изменения, в результате которых АДФ и фосфат становятся прочно связанными с каталитическим центром (состояние 2), где становится возможным образование ковалентной связи между ними, ведущей к образованию АТФ. На данной стадии АТФ-синтазы ферменту практически не требуется энергии, которая будет необходима на следующем этапе для освобождения прочно связанной молекулы АТФ из ферментативного центра. Поэтому следующий этап работы фермента заключается в том, чтобы в результате энергозависимого структурного изменения комплекса F 1 каталитическая β-субъединица, содержащая прочно связанную молекулу АТФ, перешла в состояние 3, в котором связь АТФ с каталитическим центром ослаблена. В результате этого молекула АТФ покидает фермент, а β-субъединица возвращается в исходное состояние 1, благодаря чему обеспечивается цикличность работы фермента.

Работа АТФ-синтазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтетазу вызывает вращение отдельных субъединиц фактора сопряжения F 1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу - синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда адениловых нуклеотидов внутри митохондрий.

Словарь синонимов

Митохондрия. См. пластосома. (

Митохондрии (МТ) – одно из самых интересных мне направлений исследований. Объединение митохондрий с другой клеткой в ходе эндосимбиоза около 1,6 млрд лет назад стало основной всех многоклеточных эукариотов со сложной структурой. Предположительно митохондрии произошли от клеток, напоминающих α-протеобактерии.

Лучшее обзорное исследование последнего времени по митохондриях – работа Вернера Кулбрандта «Структура и функция митохондриальных белковых комплексов мембраны ». Если вы знаете английский язык и интересуетесь устройством этих органелл, то настоятельно рекомендую к прочтению. Эта статья так хороша, что может быть смело главой хорошего учебника по молекулярной биологии. Сначала я хотел перевести всю статью, но это бы заняло непростительно много времени и оторвало бы от других дел. Поэтому ограничусь тезисами и картинками. Периодически разбавляя все своими мыслями.

Митохондрия кодирует сама только 13 белков, не смотря на наличие отдельной от клетки ДНК (мтДНК) и всего «производственного» цикла по транскрипции белков. Изолированная митохондрия какое-то время может сохранять композицию и функционировать.

Рисунок 1. Компоненты мембраны митохондриона. Внешняя мембрана отделяет митохондрию от цитоплазмы. Она окружает внутреннюю мембрану, которая отделяет межмембранное пространство от богатого белками центрального матрикса. Внутреннюю мембрану разделяют на внутреннюю пограничную мембрану и кристы. Две эти части непрерывны в местах крепления крист (cristae junction ). Кристы простираются более или менее глубоко в матрикс и являются основным место митохондриального преобразования энергии. Небольшой протоновый градиент в межмембранном пространстве (pH 7,2-7,4) и матрикс (pH 7,9-8,0) приводят к образованию АТФ АТФ-синтазой в мембранах крист.

Внешняя мембрана пористая и позволяет веществам из цитоплазмы проходить через нее. Внутренняя мембрана плотная, для ее пересечения нужны транспортные белки [Гилберт Линг обоснованно не согласен], непрерывность барьера позволяет иметь внутренней мембране электрохимический потенциал в -180 mV. У матрикса довольно большой pH (7,9-8). Еще раз углублюсь в Линга. Щелочной (выше 7) pH способствует более развернутой конформации белков . Высокий pH нарушает водородные и солевые связи, делая поляризованные CO и NH доступными молекулам воды, там самым усиливая дипольный момент всей внутриклеточной воды и связывая ее. В этом ключе наличие мембраны нужно не для «удержания» протоплазмы внутри клетки (это делают сами белки при высоком pH), а для наличия потенциала.

мтДНК находится в нуклеотидах, которых примерно 1000 на клетку. Белковая плотность матрикса довольна высокая (до 500 мг/мл), что близко к кристаллизованным белкам.

Внутренняя мембрана образует инвагинации, называемые кристами, которые глубоко проникают в матрикс. Кристы определяют третий «отсек» митохондрий – просвет крист (cristae lumen). Мембраны кристы содержат большинство, если не все, полностью «собранные» комплексы цепи переноса электронов и АТФ-синтазы. Просвет кристы содержит большое количество маленького растворимого белкового переносчика электронов (цитохром с). Митохондриальные кристы, таким образом, основное место биологической конверсии энергии во всех не фотосинтетических эукариотах.

С кристами тоже много всего интересного. Оптические свойства кристы влияют на распространение и генерацию света в тканях. Я даже встречал идеи о том, что поверхность крист подобна (предположение) поверхностям топологических изоляторов (подразумевалась суперпроводимость без диссипации заряда).

Рисунок 2. Мембранные белковые комплексы дыхательной цепи. Комплекс I (NADH / убихинон оксидоредуктаза, синий), Комплекс II (сукцинат дегидрогеназа, розовы), Комплекс III (цитохром С редуктаза, оранжевый), Комплекс IV (цитохром С оксидаза, зеленый) и митохондриальная АТФ синтаза (известная как комплекс V , бежевая) работают вместе во время окислительного фосфорилирования, чтобы клетки могли использовать энергию. Комплексы I , III , IV выкачивают протоны вдоль мембраны кристы, создавая протоновый градиент, стимулирующий синтез АТФ.

Теперь немного внимания на комплекс II. Вы помните, что жир (кето) делает упор в метаболизме на FADH2 и комплекс II. Они восстанавливают пару CoQ, в какой-то момент окисленного CoQ не хватает для транспортировки электронов на комплекс III и образует обратный поток электронов на комплекс I с образованием супероксида. При долгом HFLC-питании комплекс I будет обратимо разрушен, при этом это нормальная физиологическая оптимизация.

Еще прошу вас заметить, что комплекс II не выкачивает протоны. Что у нас рассеивает протоновый градиент, нарушает фосфорилирование и стимулирует сжигание жиров на тепло? Правильно, стресс холода. Термогенез связан с метаболизмом через комплекс, который не выкачивает протоны, тем самым не давая дополнительных протонов для АТФ-синтазы. Можно только удивляться как замечательно у нас продуман организм.

Крепления крист и MICOS

Места крепления крист (cristae junctions) – маленькие круглы отверстия примерно 25 нм диаметром. В митохондриях всех организмов есть система MICOS (mitochondria contact site and cristae to outer membrane), сборка из пяти мембранных и одного растворимого белков, прикрепляющих кристы к наружной мембране.

В клетках с повышенной потребностью в энергии, такие как скелетные и сердечные мышцы, кристы плотно заполняют большую часть объема митохондрии. В тканях с меньшими потребностями в энергии, таких как печень и почки, кристы находятся не так плотно по отношению друг к другу. Остается больше места в матрице для биосинтетических ферментов.

Рисунок 3. Томографический объем митохондрии сердца мыши. А) Трехмерный объем митохондрии сердца мыши, снятый cryo-ET. Наружная мембрана (серая) окутывает внутреннюю мембрану (светло-синяя). Внутренняя мембрана плотно наполнена кристами б) Томографический срез объема. Плотно заполненный матрикс, содержащий большую часть митохондриальных белков, выглядит темным на электронном микроскопе. В то время как межмембранное пространство и просветы крист выглядят светлыми из-за низкой концентрации белков.

Димеры АТФ синтазы

Митохондриальная F1-F0 АТФ синтаза является самым заметным белковым комплексом кристы. АТФ синтаза – это древняя наномашина, которая использует электрохимический протновых градиент вокруг внутренней мембраны для создания АФТ посредством вращательного катализа . Протоны, двигающиеся через F0 комплекс мембраны, вращают ротор из 8 (у млекопитающих) или 10 (у дрожжей) с-узлов. Центральный стебель передает крутящий момент c-ротора каталитической головке F1, где АТФ образуется из АДФ и фосфата через последовательность конформационных изменения. Периферийный стебель предотвращает непродуктивное вращение Головы F1 против комплекса F0.

Многие годы считалось, что АТФ синтаза случайным образом располагается на внутренней мембране. Но оказалось, что АТФ синтаза располагается двойными рядами . Причем линейные ряды АТФ синтазы – фундаментальный атрибут всех живых митохондрий.

Рисунок 4. Двойные ряды АТФ синтазы у семи разных видов.

Ряды АТФ синтазы располагаются в основном вдоль хребтов крист. Димеры изгибают липидный бислой и как следствие само-организуются в ряды. Когда у митохондрий дрожжей выбивали узлы e и g АФТ синтазы, то штамм рос на 60% медленней диких собратьев, и потенциал мембран их митохондрий был снижен вдвое. У АФТ синтазы прокариотов недостает нескольких узлов, связанных с димерами, ряды димеров не были найдены у бактерий и архей. Кристы и ряды димеров АФТ синтазы, таким образом, являются адаптацией к большим энергетическим потребностям организма.

Рисунок 5. Структура димера АТФ синтазы митохондрии polymella sp. Вид сбоку на V-образный димер АТФ синтазы.

Комплексы и суперкомплексы дыхательной цепи

Протоновый градиент вокруг внутренней мембраны создается тремя крупными мембранными комплексами, известными как комплекс I, комплекс III и комплекс IV (см. рисунок 2). Комплекс I кормится электронами из NADH, высвобождаемая при передаче электрона энергия выкачивает четыре протона. Комплекс III получает электрон от восстановленного хинола и передает его носителю электронов (цитохрому с), выкачивая в процессе один протон. Комплекс IV получает электрон из цитохрома с и передает его молекулярному кислороду, выкачивая 4 протона за каждую молекулу кислорода, превращенную в воду. Комплекс II не выкачивает протоны, напрямую передавая электроны хинолу. Как перенос электронов из NADH в хинол связан с транслокацией протонов пока не ясно. Комплекс I – крупнее III и IV вместе взятых.

Рисунок 6. Комплекс I митохондрии коровьего сердца. Матриксная часть содержит ряд из восьми железно-серных (Fe-S) кластеров, которые направляют электроны из NADH в хинол на пересечении матрикса и мембраны. Мембранная часть состоит из 78 лопастей, включая выкачивающие протоны молекулы.

Комплексы I, III и IV соединяются в суперкомплексы или респирасомы. У пекарских дрожжей (saccharomyces cerevisiae ) нет комплекса I, их суперкомплексы состоят из III и IV. Роль суперкомплексов пока еще не ясна. Предполагают, что это делает транспорт электронов более эффективным, но прямых доказательств этому пока нет.

Рисунок 7. Суперкомплекс митохондрии коровьего сердца. Обратите внимание на дистанцию между комплексами I и III, который надо проделать хинолу. Стрелки – движения электрона в суперкомплексе.

Основным белком просвета кристы является цитохром с, который переносит электрон из комплекса III в комплекс IV. Если цитохром с высвобождается в цитоплазму клетки, то вызывает апоптоз .

Рисунок 8. Ряды димеров АТФ синтазы задают форму кристам. У хребта кристы АФТ синтаза (желтый) образует слив для протонов (красный), протоновые насосы электронной цепи (зеленый) находятся по обоим сторона рядов димеров. Направляя протоны от источника к АТФ синтазе, кристы работают как протоновые направляющие, позволяющие эффективное производство АТФ. Красные стрелки показывают направление потока протонов.

Реорганизация мембраны во время старения

Старение – фундаментальный и плохо понимаемый процесс всех эукариотов. Исследовали старение митохондрий на грибах Podospora anserina , которые живут всего 18 дней. В нормальной митохондрии кристы проникают глубоко в матрикс. Для этого нужны ряды димеров АТФ синтазы и MICOS комплекс у мест крепления крист. С возрастом кристы начинают все ближе подходить к поверхности мембраны, димеры АФТ синтазы превщаются в мономеры, и все заканчивается высвобождением цитохрома с и клеточной смертью.

Транспорт электронов создает супероксид в комплексах I и III. Это побочный продукт метаболизма. Одновременно необходимый и смертельно опасный. Во время старения деление (fission) начинает превалировать над сращением (fussion). Это не дает поврежденным митохондриям «спастись» путем сращения и ускоряет неизбежное.

Рисунок 9. Изменения морфологии внутренней мембраны и димеров АТФ синтазы во время старения митохондрии.

Как видите, полей для будущих исследований очень много. Я предполагаю стык физики и биологии, где физики будут пытаются объяснить почему такая структура более энергетически эффективна. Тем более публикации по квантовой биологии

Митохондрии – преобразователи энергии и её поставщики для обеспечения клеточных функций – занимают значительную часть цитоплазмы клеток и сосредоточены в местах высокого потребления АТФ (например, в эпителии канальцев почки они располагаются вблизи плазматической мембраны (обеспечение реабсорбции), а в нейронах – в синапсах (обеспечение электрогенеза и секреции). Количество митохондрий в клетке измеряется сотнями. Митохондрии имеют собственный геном. Органелла функционирует в среднем 10 суток, обновление митохондрий происходит путем их деления.

Морфология митохондрии

Митохондрии чаще имеют форму цилиндра диаметром 0,2-1 мкм и длиной до 7 мкм (в среднем около 2 мкм). У митохондрий две мембраны – наружная и внутренняя; последняя образует кристы. Между наружной и внутренней мембранами находится межмембранное пространство. Внемембранный объем митохондрии – матрикс.

Наружная мембрана проницаема для многих мелких молекул.

Межмембранное пространство. Здесь накапливаются ионы Н + , выкачиваемые из матрикса, что создает протонный градиент концентрации по обе стороны внутренней мембраны.

Внутренняя мембрана избирательно проницаема; содержит транспортные системы для переноса веществ (АТФ, АДФ, Р 1 , пирувата, сукцината, α-кетоглурата, малата, цитрата, цитидинтрифосфата, ГТФ, дифосфатов) в обоих направлениях и комплексы цепи переноса электронов, связанные с ферментами окислительного фосфорилирования, а также с сукцинатдегидрогеназой (СДГ).

Матрикс. В матриксе присутствуют все ферменты цикла Кребса (кроме СДГ), ферменты β-окисления жирных кислот и некоторые ферменты других систем. В матриксе находятся гранулы с Mg 2+ и Ca 2+ .

Цитохимические маркёры митохондрий – цитохромоксидаза и СДГ.

Функции митохондрий

Митохондрии выполняют в клетке множество функций: окисление в цикле Кребса, транспорт электронов, хемиосмотическое сопряжение, фосфорилирование АДФ, сопряжение окисления и фосфорилирования, функцию контроля внутриклеточной концентрации кальция, синтез белков, образование тепла. Велика роль митохондрий в программированной (регулируемой) гибели клеток.

Теплорепродукция. Естественный механизм разобщения окислительного фосфорилирования функционирует в клетках бурого жира. В этих клетках митохондрии имеют атипичную структуру (уменьшен их объем, увеличена плотность матрикса, расширены межмембранные пространства) – конденсированные митохондрии. Такие митохондрии могут усиленно захватывать воду и набухать в ответ на тироксин, увеличение концентрации Ca 2+ в цитозоле, при этом усиливается разобщение окислительного фосфорилирования, и происходит выделение тепла. Эти процессы обеспечивает специальный разобщающий белок термогенин. Норадреналин из симпатического отдела вегетативной нервной системы усиливает экспрессию разобщающего белка и стимулирует теплопродукцию.

Апоптоз. Митохондрии играют важную роль в регулируемой (программированной) гибели клеток – апоптозе, выделяя их в цитозоль факторы, повышающие вероятность гибели клетки. Одним из них является цитохром С – белок, переносящий электроны между белковыми комплексами во внутренней мембране митохондрий. Выделяясь из митохондрий, цитохром С включается в состав апоптосомы, активирующей каспазы (представители семейства киллерных протеаз).

Характерные для подавляющего большинства клеток. Основная функция – это окисление органических соединений и производство АТФ-молекул из освободившейся энергии. Маленькая митохондрия является главной энергетической станцией всего организма.

Происхождение митохондрий

Среди ученых на сегодняшний день весьма популярно мнение, что митохондрия появилась в клетке не самостоятельно в ходе эволюции. Скорее всего, это произошло из-за захвата примитивной клеткой, не способной на тот момент самостоятельно использовать кислород, бактерии, которая умела это и, соответственно, была превосходным источником энергии. Подобный симбиоз оказался успешным и закрепился в последующих поколениях. В пользу этой теории указывает наличие в митохондриях собственной ДНК.

Как устроены митохондрии

Митохондрия обладает двумя мембранами: наружной и внутренней. Главная функция наружной мембраны – это отделение органоида от цитоплазмы клетки. Она состоит из билипидного слоя и белков, пронизывающих его, через которые и осуществляется транспорт молекул и ионов, необходимых для работы. В то время как гладкая, внутренняя образует многочисленные складки – кристы, которые существенно увеличивают ее площадь. Внутренняя мембрана по большей части состоит из белков, среди которых присутствуют ферменты дыхательной цепи, транспортные белки и крупные АТФ-синтетазные комплексы. Именно в этом месте происходит синтез АТФ. Между наружной и внутренней мембраной находится межмембранное пространство с присущими ему ферментами.

Внутреннее пространство митохондрий называется матрикс. Здесь расположены ферментные системы окисления жирных кислот и пирувата, ферменты цикла Кребса, а также наследственный материал митохондрий – ДНК, РНК и белоксинтезирующий аппарат.

Для чего нужны митохондрии

Главной функцией митохондрий является синтез универсальной формы химической энергии – АТФ. Также они принимают участие в цикле трикарбоновых кислот, превращая пируват и жирные кислоты в ацетил-CoA, а затем окисляя его. В этом органоиде хранится и передается по наследству митохондриальная ДНК, кодирующая воспроизводство тРНК, рРНК и некоторых белков, необходимых для нормального функционирования митохондрий.

Похожие публикации