Интернет-журнал дачника. Сад и огород своими руками

Как доказать что 2 прямые параллельны. Параллельные прямые. Визуальный гид (2019)

§ 1. Признаки параллельности двух прямых - Геометрия 7 класс (Атанасян Л. С.)

Краткое описание:

О том, что такое параллельные прямые, вы узнаете в этом параграфе. Вы получите простое определение, но в то же время несколько необычное, — две прямые на плоскости называются параллельными, если они не пересекаются. Другими словами, если две прямые не пересекаются, то они и будут параллельными. Или, если прямые не имеют точек пересечения, то они параллельны.
Необычность этого определения заключается в том, что если перед вами две прямые и вы не видите их точку пересечения, то это вовсе не значит, что ее нет. Это значит, что вы ее, возможно, просто не видите.
Поэтому это определение невозможно использовать напрямую для того, чтобы доказать, что две прямые являются параллельными. Ведь вы же не можете бесконечно следовать за продолжением прямых для того, чтобы убедиться в том, что они таки не пересекаются.
Но это и не нужно. Существуют признаки, по которым можно судить о параллельности прямых. Их три. В соответствие с каждым из них рассматривают особые углы или их комбинации, которые образуются при пересечении этих двух исследуемых прямых третьей прямой – секущей. По этим углам и судят о параллельности прямых.
Доказательства этих признаков – теоремы о параллельности прямых – основаны на теореме, которую вы уже рассматривали в 1 главе учебника, — две прямые, перпендикулярные третьей, не пересекаются. Только теперь эта теорема выглядит иначе, — две прямые, перпендикулярные третьей, — параллельны.

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 35. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ.

Теорема о том, что два перпендикуляра к одной прямой параллельны (§ 33), даёт признак параллельности двух прямых. Можно вывести более общие признаки параллельности двух прямых.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и / 1 = / 2. Возьмём точку О - середину отрезка КL секущей ЕF (черт. 189).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ_|_МN. Докажем, что и СD_|_МN.
Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: / 1 = / 2 по условию теоремы; ОK = ОL - по построению;
/ МОL = / NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, /\ МОL = /\ NОК, а отсюда и
/ LМО = / КNО, но / LМО прямой, значит, и / КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны (§ 33), что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например / 3 = / 2 (черт. 190);
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на чертеже 191. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).

Пусть / 1 и / 2-внутренние односторонние углы и в сумме составляют 2d .
Но / 3 + / 2 = 2d , как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.

Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d, то эти две прямые параллельны.

Упражнение.

Доказать, что прямые параллельны:
а) если внешние накрест лежащие углы равны (черт. 193);
б) если сумма внешних односторонних углов равняется 2d (черт. 194).

Инструкция

Перед началом доказательства убедитесь, что прямые лежат в одной плоскости и их можно изобразить на ней. Наиболее простым способом доказательства является метод измерения линейкой. Для этого при помощи линейки измерьте расстояние между прямыми в нескольких местах как можно дальше друг от друга. Если расстояние остается неизменным, данные прямые параллельны. Но такой метод недостаточно точен, поэтому лучше используйте другие способы.

Проведите третью прямую, так, чтобы она пересекала обе параллельные прямые. Она образует с ними четыре внешних и четыре внутренних угла. Рассмотрите внутренние углы. Те, которые лежат через секущую прямую называются накрестлежащими. Те, что лежат по одной стороне называются односторонними. При помощи транспортира измерьте два внутренних накрестлежащих угла. Если они равны между собой, то прямые будут параллельными. Если остались сомнения, измерьте односторонние внутренние углы и сложите получившиеся значения. Прямые будут параллельными, если сумма односторонних внутренних углов будет равна 180º.

Если нет транспортира, возьмите угольник с углом 90º. С его помощью постройте перпендикуляр к одной из прямых. После этого продолжите этот перпендикуляр таким образом, чтобы он пересек другую прямую. С помощью того же угольника проверьте, под каким углом этот перпендикуляр пересекает ее. Если этот угол тоже равен 90º, то прямые параллельны между собой.

В том случае, если прямые заданы в декартовой системе координат, найдите их направляющие или нормальные векторы. Если эти векторы, соответственно, между собой коллинеарны, то прямые параллельны. Приведите уравнение прямых к общему виду и найдите координаты нормального вектора каждой из прямых. Его координаты равны коэффициентам А и В. В том случае, если отношение соответствующих координат нормальных векторов одинаково, они коллинеарны, а прямые параллельны.

Например, прямые заданы уравнениями 4х-2у+1=0 и х/1=(у-4)/2. Первое уравнение – общего вида, второе – канонического. Приведите второе уравнение к общему виду. Используйте для этого правило преобразования пропорций, в результате получите 2х=у-4. После приведения к общему виду получите 2х-у+4=0. Поскольку уравнение общего вида для любой прямой записывается Ах+Ву+С=0, то для первой прямой: А=4, В=2, а для второй прямой А=2, В=1. Для первой прямой координаты нормального вектора (4;2), а для второй – (2;1). Найдите отношение соответствующих координат нормальных векторов 4/2=2 и 2/1=2. Эти числа равны, а значит вектора коллинеарны. Поскольку вектора коллинеарны, прямые параллельны.

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 - 11 классов).

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 - 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = (a x , a y) и b → = (b x , b y) являются направляющими векторами прямых a и b ;

и n b → = (n b x , n b y) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b - A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты (А 1 , В 1) и (А 2 , В 2) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b - y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты (k 1 , - 1) и (k 2 , - 1) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 - 1 = t · (- 1) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x - x 1 a x = y - y 1 a y и x - x 2 b x = y - y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Разберем примеры.

Пример 1

Заданы две прямые: 2 x - 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y - 1 = 0

Мы видим, что n a → = (2 , - 3) - нормальный вектор прямой 2 x - 3 y + 1 = 0 , а n b → = 2 , 1 5 - нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 - 3 = t · 1 5 ⇔ t = 1 - 3 = t · 1 5 ⇔ t = 1 - 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y = 2 x + 1 и x 1 = y - 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y - 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y - 4 2 ⇔ 1 · (y - 4) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, (0 , 1) , координаты этой точки не отвечают уравнению прямой x 1 = y - 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = (2 , - 1) , а направляющий вектором второй заданной прямой является b → = (1 , 2) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + (- 1) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Пример 3

Заданы прямые x 1 = y - 2 0 = z + 1 - 3 и x = 2 + 2 λ y = 1 z = - 3 - 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: (1 , 0 , - 3) и (2 , 0 , - 6) .

1 = t · 2 0 = t · 0 - 3 = t · - 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

>>Геометрия: Признак параллельности прямых. Полные уроки

ТЕМА УРОКА: Признак параллельности прямых.

Цели урока:

  • Образовательные – повторение, обобщение и проверка знаний по теме: “ Признак параллельности прямых”; выработка основных навыков.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
  • Развитие познавательной активности и самостоятельности получения знаний;
  • Воспитание интереса к предмету, самостоятельности.

План урока:

  1. Параллельные прямые.
  2. Обозначения, краткий обзор буквенных переменных для исключения ошибок разного типа.
  3. Раскрытие главное темы урока, определения высоты, медианы, биссектрисы.
  4. Пошаговое построение, инструкции для корректного выполнения построения.
  5. Задание для самостоятельной проверки.

Слово «параллельный» является прилагательным к существительному «параллель», которое образовано от латинского слова «parallelus», что означает "линия, идущая вдоль другой".

Параллельные прямые.

Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются, сколько бы их ни продолжать.

На этом рисунке вы видите две прямые, которые лежат в одной плоскости и не пересекаются.

Для обозначения параллельности прямых используется знак ||. Запись I1 и I2 означает, что прямая I1 параллельна прямой I2.

На этом рисунке вы видите, как с помощью угольника и линейки провести через точку В прямую b, которая является параллельной прямой а.

Основное свойство параллельных прямых заключается в том, что через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Давайте рассмотрим, как свойства параллельных прямых применяется на практике.

Самым простым примером служат железнодорожные рельсы, которые располагаются строго параллельно друг другу:

Благодаря этому свойству, мы можем использовать рельсы для перемещения грузов и пассажиров на дальние расстояния с помощью вагонов:


Еще одним примером применения свойства параллельных прямых, является эскалатор:


Все эти устройства помогают нам в повседневной жизни. Но свойство параллельных прямых используется гораздо шире. Вот еще несколько примеров, где это используется:



Признаки параллельных прямых.

Cледующая теорема дает достаточные условия параллельности (т.е. условия, выполнение которых гарантирует параллельность) двух прямых. Иначе такую теорему можно назвать признаком параллельности прямых:

Файл:T.gif Теорема. Если внутренние накрест лежащие углы равны, то прямые параллельны.

Доказательство:

Докажем теорему так называемым методом от противного: предположим, что условие теоремы выполнено, а именно: прямые AB и CD образуют с секущей AC равные внутренние накрестлежащие углы, но вопреки утверждению теоремы прямая AB не паралельна прямой CD и, следовательно, они пересекаются в точке O, которая лежит в одной из полуплоскостей от прямой AC.


Отложим от луча АC треугольник AO 1 C, равный COА, так, что вершина O 1 лежит в другой, нежели точка O, полуплоскости. Из равенства этих треугольников следует, что Файл:07012011 9.gif , Файл:07012011 10.gif ; по условию: Файл:07012011 11.gif и тогда точки O, C, О 1 лежат на одной прямой, и, аналогично, из равенства по условию углов OCA и смежного к BAC следует, что точки O 1 , A, O лежат также на одной прямой. Отсюда следует, что через две различные точки O и O 1 плоскости проходят две различные прямые AB и CD. Полученное противоречие доказывает теорему.

На основании теоремы можно легко доказать еще несколько признаков параллельности.

  1. Если соответственные углы равны, то прямые параллельны.
  2. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  3. Из данного утверждения вытекает

Следствие

Две прямые, перпендикулярные третьей, параллельны.

Признаки параллельности прямых (примеры).



Интересный факт:

С развитием технологий, человечество все время стремиться к модернизации и улучшению того что уже есть. Так же с появлением ПК человек пытался передать все сложные и рутинные задачи именно ему. Но как и было самые простейшие знания человек должен оставлять с собой. Примером этому является не простая программа которая может обрабатывать и создавать 3D объекты, но все же самые простые детали (отрезки, углы, окружности, векторы их направлений) человек вводит вручную.





Вопросы:

  1. Что такое секущая?
  2. Назовите пары углов, которые образуются при пересечении двух параллельных прямых секущей.
  3. Перечислите признаки параллельности прямых.

Список использованных источников:

  1. Руководитель НОУ: Рябова Елена Александровна 2008г.
  2. П.И. Алтынов. Математика. 2600 тестов и проверочных заданий для школьников и поступающих в вузы.
    Издательский дом «Дрофа», 1999.
  3. Урок на тему "Параллельные прямые"
  4. Газета «Математика» № 27, 2000 год.

Похожие публикации