Интернет-журнал дачника. Сад и огород своими руками

Устройство, принцип работы и схемы защитного заземления. Что такое заземление Что является заземлением

Наличие заземляющего контакта в современных электророзетках стало привычным делом. Ему соответствует контакт на вилке любого электроприбора. Попробуем разобраться, зачем нужно заземление.

Что такое заземление

Заземлением называют подключение токопроводящих элементов, в норме не пребывающих под напряжением, к заземлителю - заглубленной в грунт металлической конструкции с низким электрическим сопротивлением. В качестве упомянутых токопроводящих элементов могут выступать металлический корпус электроустановки, рабочие органы машин или бытовых приборов и т.д.

Также заземляют экранирующие оплетки электрических кабелей.

Для чего нужно заземление

В зависимости от назначения, различают несколько видов заземления:
  • функциональное;
  • для молниезащиты.

Защитное обеспечивает безопасную эксплуатацию электроустановок.

Функциональное используется для работы прибора или схемы - играет ту же роль, что и нулевой проводник в электросети.

В системах молниезащиты заземлитель подключается к молниеприемнику.

Принцип работы

Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.

Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:

  • плотность;
  • влажность;
  • соленость;
  • площадь контакта с заземлителем.

Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».

Наглядная демонстрация заземления

На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:

  • для засыпки нового реагента;
  • для заливки воды (провоцирует химическую реакцию в засушливый период).

Другой современный вариант заземлителя - . Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.

Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:

Число стержней и расстояние между ними определяются расчетом.

Сопротивление заземлителя периодически проверяют. Максимально допустимая величина - 30 Ом.

Совокупная защита заземляющих устройств и предохранителей

Заземление не только отводит опасный ток, но при наличии аппарата защиты вызывает отключение аварийного оборудования. При контакте фазного проводника с заземленным корпусом сеть работает в режиме, близком к короткому замыканию (КЗ), сопровождающемся резким увеличением силы тока в цепи. На это реагирует выключатель автоматический (ВА), обязательно устанавливаемый на вводе электрической линии на объект.

Правда, подобное возможно лишь при очень низком сопротивлении заземлителя, что бывает крайне редко. В большинстве случаев вероятность отключения ВА довольно низкая. К примеру, при сопротивлении заземлителя в 10 Ом ток в цепи составит I = 220 / 10 = 22 А. Автоматы, согласно требованиям ГОСТ, выдерживают в течение часа ток, в 1,42 раза превышающий номинальное значение. То есть автомат на 16 А при силе тока в 22 А не отключится в течение почти 60-ти мин (16 * 1,42 = 22,72 А).

Схема заземления

Более надежный автомат защиты - или . Этот прибор сравнивает токи в фазном и нулевом проводниках и при обнаружении разницы, свидетельствующей об утечке, разъединяет цепь. По чувствительности, то есть минимальной величине утечки тока, вызывающей срабатывание, УЗО делятся на несколько категорий:

  1. Защищающие от поражения электротоком: 10 мА – устанавливаются в помещениях с высокой влажностью и 30 мА – в сухих.
  2. Противопожарные – на 100, 300 и 500 мА.

Противопожарные УЗО применяют на объектах, где короткое замыкание может вызвать пожар. Ими защищают участки сети, где поражение током практически исключено, например, цепи освещения.

Не являются взаимозаменяемыми. ВА защищает от коротких замыканий и перегрузок, УЗО - от поражения электротоком. В идеале ввод и каждая группа потребителей должны быть защищены и ВА, и УЗО.

Заземленное неэлектрическое оборудование

К заземлителю подключаются и конструкции, никак с электричеством не связанные:

  1. Ограждения и прочие конструкции на эстакадах и галереях, в которых при разряде молнии на близком расстоянии наводится опасная разность потенциалов. То же может произойти с трубопроводом или емкостью, содержащими горючее вещество. Из-за наведенного напряжения возможно искрение с последующим взрывом, потому такие конструкции также заземляют.
  2. Изделия, в которых в процессе эксплуатации накапливается статический заряд. В основном это трубопроводы и емкости: статическое электричество образуется из-за трения частиц транспортируемой среды. По этой причине ограничивают скорость подачи топлива в авиалайнеры.
  3. Трубопроводы значительной протяженности. В соответствии с законом электромагнитной индукции, в таких трубопроводах при изменении магнитного поля Земли, а оно всегда нестабильно под действием солнечного ветра, образуются так называемые блуждающие токи. Потому их подключают с определенным шагом к заземлителям.

Отличие от зануления

Занулением называют подключение токопроводящих частей электроустановки к глухозаземленной нейтрали источника тока (к нулевой жиле). Ее сопротивление намного меньше сопротивления заземлителя. Потому при замыкании фазы на зануленный корпус устройства гарантированно возникает ток КЗ, приводящий к срабатыванию автоматического выключателя.

В наиболее распространенной системе заземления типа TN одновременно осуществляется и заземление, и зануление.

Подключение к нулевой жиле осуществляется выше УЗО. Иначе токи в фазном и нулевом проводниках после замыкания фазы на корпус останутся равными и аппарат защиты не сработает.

О системах заземления

Применяют несколько систем заземления, обозначаемых комбинацией букв. Буквы имеют следующее значение:

  • I: изолированный проводник;
  • N: имеется подключение к глухозаземленной нейтрали;
  • Т: имеется подключение к заземляющему проводу.

Основных видов систем заземления три:

  1. Тип IT - система с изолированным нейтральным проводом. В данной системе изолирован от нейтрали либо контактирует с ней через резистор с высоким номиналом или воздушный промежуток. В жилых домах не применяется. Предназначена для подключения приборов, предъявляющих особые требования к безопасности и стабильности. В основном используется в лабораториях и лечебных учреждениях.
  2. Тип TT - система с независимыми заземлителями. Оптимальный вариант . Предусматривает использование двух заземлителей – для источника электротока и металлических элементов системы, не имеющих защиты. Провод заземления (РЕ) в этой системе независим, а его работоспособность на участке между оборудованием и трансформатором улучшена. Возможны сложности при подборе диаметра для собственного заземлителя. Этот недостаток компенсируется путем устройства системы защитного отключения.
  3. Тип TN. Провод заземления в такой системе совмещен с нейтралью, потому при пробое фазы на корпус происходит КЗ и автомат разъединяет цепь. Этим обеспечивается высокий уровень безопасности.

Различные системы заземления

Системы TN получили наибольшее распространение. Есть три их подвида:

  1. TN-S: вариант с нулевым и разделенным рабочим проводником. С целью повышения безопасности вместо одного нулевого провода применяется два: один используется как защитный, второй - как нейтральный с подключением к глухозаземленной нейтрали. Такая система обеспечивает наилучшую защиту от поражения током.
  2. TN и TN-C-S: вариант с PEN-проводом и парой нулей. К оборудованию подключается нулевой провод, расщепленный на жилы PE и N.
  3. В TN-C-S после разделения устанавливается второй заземлитель, чем обеспечивается бесперебойная работа системы.

Достоинства системы TN:

  • устройство довольно простое;
  • осуществляется защита от разрядов молнии;
  • для защиты проводки достаточно установить автоматы от замыкания.

Недостатки:

  • существует вероятность перегорания нуля снаружи с последующим пробоем металлических корпусов оборудования;
  • требуется оборудование для уравнивания потенциалов.

Система TN мало подходит для сельских населенных пунктов.

От правильности организации заземления подчас зависят жизни людей. Под организацией подразумевается не только устройство, но и своевременный контроль сопротивления заземлителя. Из-за окисления или изменения параметров грунта оно может оказаться завышенным, вследствие чего защитный эффект заземления будет утрачен.

Всем известно, что электричество – это неотъемлемый атрибут современного человека. Без использования электроэнергии невозможно включить чайник, чтобы попить чая или кофе, разогреть еду в микроволновке или посмотреть телевизор. Несмотря на незаменимость электричества, не стоит забывать и о его коварстве. Очень много неприятных случаев бывает при ударе током, бывают даже летальные ситуации.

Приветствую дорогие друзья и читатели сайта «Электрик в доме». Многие ощущали на себе неприятный удар током, когда случайно касались оголенного провода. Но в быту встречаются ситуации, когда человека может ударить током, даже если он дотрагивается к безобидному с виду бытовому прибору. Почему так происходит?

Как правило, такое случается, когда повреждается внутренняя изоляция и прибор не имеет заземления. В этом материале постараемся простым языком объяснить читателю, что такое заземление, как работает заземление и для чего оно необходимо.

От чего защищает заземление?

Основное предназначение заземления в электрической сети – это защита. Для работы электрических приборов в электропроводке предусмотрено два провода: фазный и нулевой.

Защита, которую обеспечивает заземление заключается в подключении третьего проводника, соединенного непосредственно с заземлителем который в свою очередь соединен с контуром заземления. Благодаря заземлению можно не беспокоиться о том, что возникшая по вине неисправности бытового прибора аварийная ситуация приведет к удару электрическим током кого либо из окружающих.

Друзья давайте разберемся, какие аварийные ситуации могут возникнуть и в чем заключается ?

Опасность поломки электрического прибора заключается в том, что его корпус может оказаться под напряжением, тем самым сделав его опасным. Такое обстоятельство может возникнуть в том случае, если повреждается внутренняя изоляция. Например, когда провода прибора со временем ссыхаются или плавятся, и соприкасается с металлическим корпусом бытового прибора.

Визуально заметить такую аварийную поломку невозможно, однако достаточно дотронуться к электроплите или стиральной машинке, удар током пройдет незамедлительно.

У многих после таких ситуаций возникает вопрос: , и может ли оно эффективно защитить. Сила такого удара может быть разной в зависимости от состояния человека и окружающих условий.

Что произойдет, если корпус не соединен с заземлением ? Сама по себе такая поломка ничего собой не представляет. Стиральная машинка с пробитым корпусом как работала, так и будет работать. Она будет отлично выполнять свои функции, пока вы к ней не дотронетесь.

Все дело в том, что человек больше чем на 70% состоит из воды и является прекрасным проводником электричества. Когда вы стоите на полу или прикасаетесь к стене, то ваше тело может послужить проводником. При прикосновении к поврежденному корпусу ток начнет протекать через ваше тело в землю.

Конечно, можно избежать удара током, если одеть резиновые перчатки или обувь, но в доме так никто не ходит. Если у вас в доме нет заземления, и прибор бьется током, следует помнить, что даже невысокое напряжение может привести к плачевным обстоятельствам.

Величина в 50 мА уже является опасной для человека. Такое маленькое значение тока может привести к фибрилляции сердца и даже к смертельному случаю.

Для того чтобы не беспокоиться за свою жизнь и здоровье семьи важно, чтобы в доме было подключено заземление. В этом случае опасный потенциал, имеющийся на корпусе прибора, будет уходить в землю, защищая вас от удара. В этом заключается . К тому же дополнительно заземлению рекомендуется устанавливать УЗО, которое отключит поврежденное оборудование при малейших утечках.

Принцип работы заземления

После того как приборы будут заземлены пробой внутренней изоляции нам не страшен. Если по каким-то причинам корпус прибора окажется под напряжением, возникнет короткое замыкание между фазой и заземлением. В результате чего сработает автоматический выключатель. Благодаря правильно установленному заземлению и срабатыванию автомата, человека не ударит током.

Однако здесь есть некоторые нюансы электротехники. Не всегда при пробое напряжения на корпус может выбить автомат и в таких случаях прекрасным помощником станет устройство защитного отключения.

Как работает заземление электрооборудования

Что касается жителей частного сектора, то в основном, на этих районах электричество на участки подводится воздушными линиями электропередач. Как правило, это двухпроводные линии, которые состоят из фазного и нулевого провода. В нашей стране линии электропередач оставляют желать лучшего, ведь на одном кабеле, идущем по основной линии, может быть много скруток.

Порывы ветра, падающие ветки и осадки могут в любой момент оборвать силовой кабель и если у вас в доме не установлена система защиты в виде заземления и устройства УЗО, то пострадать может не только владелец дома, но и вся его техника. Здесь установка заземления особенно актуальный вопрос.

Сегодня можно самостоятельно создать хорошую защиту для дома и создать заземление собственными руками, обеспечивая сохранность приборов и здоровья домочадцев.

Правильно изготовленная и установленная система защиты сможет уберечь электроприборы даже в момент обрыва линии идущей к дому. В настоящее время индивидуальная работа заземления дома в совокупности с УЗО считается популярными средствами защиты от удара током в собственном доме.

Работа заземления в частном секторе

В данном разделе разберем, как работает заземление на примере частного дома. Схема питания дома, изображенная на рисунке состоит из воздушной линии. Воздушная линия – двухпроводная, наиболее часто встречающаяся в частном секторе. Состоит из двух проводов фазного (на рисунке обозначен красным цветом) и нулевого (синего цвета). Нулевой провод является нулевым рабочим и защитным одновременно. То есть совмещенным проводником. В электротехнической литературе обозначается как PEN проводник.

Для того чтобы разделить этот проводник на два независимых рабочий и защитный, во вводном щите дома делается специальное ответвление на заземляющий контур. После этого с вводного щита выходит два нулевых проводника которые имеют разное назначение. Один из них рабочий ноль, который служит для работы приборов. Другой защитный ноль - заземляющий проводник, должен иметь желто-зеленую маркировку и обозначение PE .

В «Правилах Устройства Электроустановок» такая система заземления обозначается как TN-C-S. Внутренняя электропроводка дома должна быть трехпроводной, то есть фаза, ноль и заземление. Все розетки в доме должны быть соответственно с заземляющим контактом. В этом случае корпус потенциально опасного прибора будет подключен к защитному проводнику через заземляющий контакт розетки. В зону риска особенно входит так называемая мокрая техника это водонагреватели, насосы, посудомоечные и стиральные машинки.

Если в ходе эксплуатации фазный провод в результате пробоя изоляции соприкасается с корпусом прибора (для примера это корпус холодильника), то между фазным проводом (красным) и заземляющим (желто-зеленым) произойдет замыкание, в результате чего отключится силовой автомат.

Мнимая защита или неправильное заземление

Бывают ситуации, когда заземление может быть опасным. Это при условии НЕПРАВИЛЬНОГО ПОДКЛЮЧЕНИЯ. Друзья сейчас рассмотрим случай неправильного подключения заземления и сравним его со случаем рассмотренным выше.

На рисунке изображена схема неправильного заземления. Суть его заключается в подключении заземляющего проводника (провода заземления в электропроводке) к нулевому рабочему. Нулевой провод же заземлен на подстанции, почему же от него не заземлиться? К сожалению, встречаются специалисты в нашей отрасли, которые совершают такие ошибки.

В чем заключается опасность? В исправном состоянии техника будет работать без нареканий, все электрические приборы будут выполнять свою работу. Друзья давайте теперь рассмотрим другую ситуацию когда нулевой провод на линии был оборван в результате сильного ветра, при этом красный все еще остался целым.

При замыкании фазного провода на корпус в этом случае короткого замыкания не возникнет, так как заземляющий провод , который одновременно является и нулевым рабочим оборван по пути к дому, разности потенциалов между фазным и заземляющим проводом нет, и короткого замыкания не произойдет. Отсюда не сложно догадаться, что автоматический выключатель не отключится, так как ему просто не на что реагировать (нет тока короткого замыкания).

Из этого следует, что корпус холодильника, находясь под опасным напряжением, будет ждать свою жертву. Сила удара током в этой ситуации будет напрямую зависеть от того какая соприкосаемость человека с землей. Чем лучше контакт, тем сильнее ударит.

В некоторых случаях удар током через корпус прибора может быть фатальным, чтобы не случилось неприятностей нужно знать, как работает заземление в доме.

К примеру, вы прикасаетесь к пробиваемой электрической водогрейке и одновременно беретесь за водопроводную трубу. Также опасно браться за корпус прибора, который находится под напряжением при этом стоять босым на бетонных полах. Такой пол может служить проводником.

Как работает узо с заземлением

Чувствительность системы заземления, а соответственно и электробезопасность можно повысить установив в электрощите устройство защитного отключения (УЗО). Данный прибор реагирует на утечку тока и отключается при ее появлении тем самым обестачивая технику с поврежденной изоляцией. УЗО срабатывает даже в тех случаях если происходит малейшая утечка тока.

В реальности утечка тока может происходить как через заземленный корпус прибора, так и через тело человека (если заземления в доме отсутствует), что менее приятно. На рисунке показана ситуация когда ток проходит через тело человека.

К примеру, человек касается корпуса неисправного прибора, корпус которого не заземлен. В момент прикосновения через человека начинает протекать ток, и УЗО реагируя на него мгновенно отключится. Продолжительность удара током для человека в этом случае будет равна времени отключения УЗО. Обычно она равняется десятым долям секунды.

Незначительное и кратковременное воздействие тока в большинстве случаев приносить незначительный вред, человек получает болевые неприятные ощущения и испуг, который проходит уже через несколько минут.

Казалось бы идеальный вариант защиты, но не все так гладко. Даже такая система защиты имеет свои недостатки:

  • если прибор не имеет заземления, то, следовательно, УЗО не сможет зафиксировать утечку, а понять поломку можно будет только после пусть небольшого, но удара током;
  • по сути УЗО - это сложный электронный прибор, который не может сработать моментально, для отключения требуется время, следовательно, защита только с помощью УЗО может оказаться слишком медленной.
  • за счет высокой стоимости на УЗО домовладельцы, как правило, экономят и покупают устройства низкого качества либо устанавливают одно УЗО на весь дом, а в этом случае сложно гарантировать своевременное срабатывание.

Не стоит использовать устройства УЗО сомнительного качества и малоизвестных брендов. Ответственность за свою защиту, каждый человек несет самостоятельно, поэтому покупать нужно только оригинальный и сертифицированный товар. В настоящий момент рынок переполнен электрооборудованием различных производителей и нужно ответственно относиться, к такой покупке.

Друзья мы с вами рассмотрели принцип работы заземления, и что может произойти при неправильном способе заземления . Основное преимущество такой схемы подключения заключается в том, что у нее имеется свой индивидуальный контур заземления и в случае обрыва провода на линии электропередач он не сможет никак повлиять на работоспособность.

Важно! Не стоит думать, что если у дома есть заземление , то не нужно использовать УЗО. Даже при малейшей утечке прибор может зафиксировать проблему и отключить поврежденный участок сети, обеспечив безопасность и здоровье человека.

Электричество – это друг и враг человека, поэтому чтобы не произошло чего-то непредвиденного необходимо правильно делать электропроводку, и знать, как работает заземление в доме . Если нет знаний и опыта работы с электричеством, то такую работу лучше доверить профессионалам, которые все сделают, не только быстро, но и качественно с учетом всех норм и требований.

Заземление

Начало формы

Конец формы

Предупреждение : статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться Правилами устройства электроустановок (ПУЭ).

Определения

Заземление - это преднамеренное соединение нетоковедущих элементов оборудования, которые в результате пробоя изоляции могут оказаться под напряжением, с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды - используя множество стержней, повышая содержание солей в земле и т.д. Как правило, электрическое сопротивление заземления нормируется. Главный заземляющий зажим. Для сведения к минимуму электромагнитных помех и обеспечения электробезопасности заземление следует выполнять с минимальным количеством замкнутых контуров. Обеспечение этого условия возможно при выполнении так называемого главного заземляющего зажима (ГЗЗ), или шины. Главный заземляющий зажим должен быть расположен как можно ближе к входным кабелям питания и связи и соединен с заземлителем (заземлителями) проводником наименьшей длины. Такое расположение ГЗЗ обеспечивает наилучшее выравнивание потенциалов и ограничивает наведенное напряжение от индустриальных помех, грозовых и коммутационных перенапряжений, приходящее извне по экранам кабелей связи, броне силовых кабелей, трубопроводам и антенным вводам. К ГЗЗ (шине) должны быть присоединены:

    заземляющие проводники;

    защитные проводники;

    проводники главной системы уравнивания потенциалов;

    проводники рабочего заземления (если оно необходимо).

С главным заземляющим зажимом (шиной) должны быть соединены заземлители защитного и рабочего (технологического, логического и т. п.) заземления, заземлители молниезащиты и др. Подробно правила и требования устройства ГЗЗ изложены в ПУЭ. Открытая токопроводящая часть – доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции. К открытым проводящим частям относятся металлические корпуса электрооборудования. Токоведущая часть – электропроводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением. Косвенное прикосновение – электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.

Обозначения

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах. Графические символы, используемые для обозначения проводников на схемах:

Обозначение заземления:

Буквенные обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания: T – непосредственное соединения нейтрали источника питания с землёй; I – все токоведущие части изолированы от земли. Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания: T – непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй; N – непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания. Буквы, следующие через чёрточку за N, определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников: S – функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками; C – функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Ошибки в устройстве заземления

Неправильные PE-проводники Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.

Объединение рабочего нуля и PE-проводника Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токоведущим в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено).

Неправильное разделение PEN-проводника Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем. Опасность данной схемы в том, что на заземляющем контакте розетки, а, следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:

    Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);

    Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Электросеть — это основа современного мира. Почти вся современная бытовая техника работает от электричества, ведь это удобный источник энергии. Но есть и обратная сторона медали - высокая опасность поражения электрическим током. Без правильного подхода конструированию оборудования и проектированию электрических сетей электричество наделает больше беды чем пользы. Заземление - один из способов обеспечения безопасности.

Простыми словами о заземлении

Заземление - это комплекс решений и устройств для защиты от поражения электрическим током и обеспечению работы защитной аппаратуры.

Отечественные электросети имеют . Что это значит? Если рассмотреть этот вопрос упрощённо, то на электростанциях устанавливают трёхфазные генераторы. Их обмотки соединяют по схеме звезды. Точка соединения обмоток является нейтралью.

Если заземлить точку соединения звезды, как это показано на рисунке выше, то получится линия электропередач с глухозаземленной нейтралью. Потенциал этой точки и нейтрального провода будет равен потенциалу земли.

Заземляющее устройство называют . Обычно это три металлических штыря убитые в землю на одинаковом расстоянии друг от друга, находясь как бы в вершинах треугольника, при этом их соединяют между собой стальной полосой с помощью сварки. Длина штырей и их поперечное сечение рассчитывается под конкретные условия и требования к этому объекту.

Заземляющий проводник заводится в электрический щит дома или квартиры и соединяется с заземляющей шиной. Она представляет собой металлическую полосу с клеммниками. К ней подключаются земляные проводники от каждого заземленного прибора или розетки. Если прибор подключается не через розетку, то к нему прокладывается свой заземляющий проводник, и он подключается к специальной клемме, соединенной с корпусом.

Все заземляющие проводники и шины имеют изоляцию или окрашены чередующимися полосами зеленого и желтого цветов.

По виду заземление бывает защитным и рабочим. Как можно догадаться, защитное заземление выполняет функции защиты от поражения электрическим током, а рабочее - нужно для нормального функционирования электрооборудования.

Таким образом заземлением называют электрическое соединения корпуса электроприборов с заземлителем.


Чтобы разобраться для чего нужно заземление, для начала разберёмся в каких случаях и почему нас бьет током. Главное, что нужно для протекания электрического тока - это разность потенциалов.

Это значит, что если вы стоите на полу и возьметесь за оголенный провод или другую токоведущую часть руками - то ток через ваше тело и пол стечёт в землю.

Внимание:

Переменный ток силой всего в 50 мА уже является опасным для человека.

А если вы обеими руками возьметесь за токоведущую часть и повисните на ней не касаясь земли, то скорее всего ничего не произойдёт, проверять это, конечно не стоит. Поэтому птиц не бьет током на проводах. Но вернёмся к разговору о заземлении. Как мы уже сказали, корпуса электроприборов заземляют. Для чего это нужно?

Проводка и другие узлы оборудования, такие как электродвигатели, ТЭНы и прочее в нормальном состоянии не имеют контактов фазы с корпусом прибора, металлорукавом или бронёй кабеля. Но в случае неполадок фаза может оказаться на корпусе. Это может произойти при повреждении изоляции обмоток двигателей и трансформаторов, пробоя диэлектрического слоя ТЭНов, повреждения изоляции соединительных проводов внутри прибора и кабельных линий.

В результате на корпусе окажется опасный потенциал, простым языком: корпус окажется "под фазой". Когда вы коснетесь его стоя босиком на плитке, бетонном и даже деревянном полу - вас ударит током. В худшем случае, это может привести к смерти.

Чаще всего такая ситуация возникает в результате , водонагревательных баков, проточных нагревателей. А особенно ярко такое ощущается при одновременном касании стиральной машины и водопроводных и отопительных труб, или в случае с водонагревательным баком, когда вы принимаете душ или ванную вас, бьёт током.

Последняя проблема решается организацией (заземлением ванны и других металлических частей водопровода).

Если корпус поврежденного прибора заземлён - опасное напряжение стечет на землю и (или) сработает защитный прибор - устройство защитного отключения (УЗО) или автоматический выключатель дифференциального тока (дифавтомат). Мы уже рассматривали что это за приборы и как они работают в статьях ранее:

Если корпус занулён - сработает , так как это будет коротким замыканием на корпус (ноль в данном случае). Дифавтоматы и УЗО определяют утечку тока путём сравнения токов фазного и нулевого провода - если ток в фазе больше чем в нуле, значит ток втекает в землю, через заземляющий провод или через тело человека. Такие приборы срабатывают при дифференциальном токе (разнице токов) обычно в 10 мА и более.

Поэтому - это сложное устройство с большим набором коммутационных защитных приборов, а наличие заземления является обязательным во всех зданиях, построенных или отремонтированных после 2003 года. То есть в них должна быть проложена 3-проводная однофазная или 5-проводная трёхфазная электропроводка. Если вы хотите высказать своё мнение по вопросам заземления - пишите в комментариях об этом.

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током - короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, - значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент - характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление - это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства - выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов - естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества - малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений - допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один - показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации , необходимо воспользоваться формулой R≤250/I, где:

  • I - показатель расчетного тока заземления;
  • R - показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет - 50 В), формула видоизменяется: R≤U/I, где U - это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна - достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления - выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых .

Чаще на практике применяются два вида подключения - схемы TN-C-S и TT. Отличия в проектировании схем:


Цифрой 1 на картинке обозначено заземление источника; цифрой 2 - дом, а 3 - это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, - обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление - важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Похожие публикации