Интернет-журнал дачника. Сад и огород своими руками

Как найти общий вид первообразной. Первообразная и неопределенный интеграл, их свойства

Цель:

  • Формирование понятия первообразной.
  • Подготовка к восприятию интеграла.
  • Формирование вычислительных навыков.
  • Воспитание чувства прекрасного (умение видеть красоту в необычном).

Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (х)`=3х 2 .
Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
Однако, легко можно заметить, что f(х) находится неоднозначно.
В качестве f(х) можно взять
f(х)= х 3 +1
f(х)= х 3 +2
f(х)= х 3 -3 и др.

Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos 2 3х

Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

Лекция 2.

Тема: Первообразная. Основное свойство первообразной функции.

При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

Это утверждение можно продемонстрировать геометрически.

Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

Теорема: (Основное свойство первообразной функции)

Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

Доказательство:

Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
Это означает, что Φ(х)- F(х) постоянна на промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sin х+С –множество всех первообразных.

F 1 (х) = Sin х-1
F 2 (х) = Sin х
F 3 (х) = Sin х+1

Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 1 2 +С
С = 3
F(х) = х 2 +3

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна \frac{4+3}{2}\cdot 3=10,5.

Ответ

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x) , определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F"(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F"(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3 .

Её площадь равна \frac{5+3}{2}\cdot 3=12.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F"(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F"(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)\cdot 3^2 -7-(-1^3 +(4,5)\cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Первообразная функции

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

Урок и презентация на тему: "Первообразная функция. График функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Алгебраические задачи с параметрами, 9–11 классы
"Интерактивные задания на построение в пространстве для 10 и 11 классов"

Первообразная функция. Введение

Ребята, вы умеем находить производные функций, используя различные формулы и правила. Сегодня мы будем изучать операцию, обратную вычислению производной. Понятие производной часто применяется в реальной жизни. Напомню: производная – это скорость изменения функции в конкретной точке. Процессы, связанные с движением и скоростью, хорошо описываются в этих терминах.

Давайте рассмотрим вот такую задачу: "Скорость движения объекта, по прямой, описывается формулой $V=gt$. Требуется восстановить закон движения.
Решение.
Мы хорошо знаем формулу: $S"=v(t)$, где S - закон движения.
Наша задача сводится к поиску функции $S=S(t)$, производная которой равна $gt$. Посмотрев внимательно, можно догадаться, что $S(t)=\frac{g*t^2}{2}$.
Проверим правильность решения этой задачи: $S"(t)=(\frac{g*t^2}{2})"=\frac{g}{2}*2t=g*t$.
Зная производную функции, мы нашли саму функцию, то есть выполнили обратную операцию.
Но стоит обратить внимание вот на такой момент. Решение нашей задачи требует уточнения, если к найденной функции прибавить любое число (константу), то значение производной не изменится: $S(t)=\frac{g*t^2}{2}+c,c=const$.
$S"(t)=(\frac{g*t^2}{2})"+c"=g*t+0=g*t$.

Ребята, обратите внимание: наша задача имеет бесконечное множество решений!
Если в задаче не задано начальное или какое-то другое условие, не забывайте прибавлять константу к решению. Например, в нашей задаче может быть задано положение нашего тела в самом начале движения. Тогда вычислить константу не трудно, подставив ноль в полученное уравнение, получим значение константы.

Как называется такая операция?
Операция обратная дифференцированию называется – интегрированием.
Нахождение функции по заданной производной – интегрирование.
Сама функция будет называться первообразной, то есть образ, то из чего была получена производная функции.
Первообразную принято записывать большой буквой $y=F"(x)=f(x)$.

Определение. Функцию $y=F(x)$ называется первообразной функции $у=f(x)$ на промежутке Х, если для любого $хϵХ$ выполняется равенство $F’(x)=f(x)$.

Давайте составим таблицу первообразных для различных функции. Ее надо распечатать в качестве памятки и выучить.

В нашей таблице никаких начальных условий задано не было. Значит к каждому выражению в правой части таблицы следует прибавить константу. Позже мы уточним это правило.

Правила нахождения первообразных

Давайте запишем несколько правил, которые нам помогут при нахождении первообразных. Все они похожи на правила дифференцирования.

Правило 1. Первообразная суммы равна сумме первообразных. $F(x+y)=F(x)+F(y)$.

Пример.
Найти первообразную для функции $y=4x^3+cos(x)$.
Решение.
Первообразная суммы равна сумме первообразных, тогда надо найти первообразную для каждой из представленных функций.
$f(x)=4x^3$ => $F(x)=x^4$.
$f(x)=cos(x)$ => $F(x)=sin(x)$.
Тогда первообразной исходной функции будет: $y=x^4+sin(x)$ или любая функция вида $y=x^4+sin(x)+C$.

Правило 2. Если $F(x)$ – первообразная для $f(x)$, то $k*F(x)$ – первообразная для функции $k*f(x)$. (Коэффициент можем спокойно выносить за функцию).

Пример.
Найти первообразные функций:
а) $y=8sin(x)$.
б) $y=-\frac{2}{3}cos(x)$.
в) $y={3x}^2+4x+5$.
Решение.
а) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная исходной функции примет вид: $y=-8cos(x)$.

Б) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная исходной функции примет вид: $y=-\frac{2}{3}sin(x)$.

В) Первообразной для $x^2$ служит $\frac{x^3}{3}$. Первообразной для x служит $\frac{x^2}{2}$. Первообразной для 1 служит x. Тогда первообразная исходной функции примет вид: $y=3*\frac{x^3}{3}+4*\frac{x^2}{2}+5*x=x^3+2x^2+5x$.

Правило 3. Если $у=F(x)$ - первообразная для функции $y=f(x)$, то первообразная для функции $y=f(kx+m)$ служит функция $y=\frac{1}{k}*F(kx+m)$.

Пример.
Найти первообразные следующих функций:
а) $y=cos(7x)$.
б) $y=sin(\frac{x}{2})$.
в) $y={-2x+3}^3$.
г) $y=e^{\frac{2x+1}{5}}$.
Решение.
а) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная для функции $y=cos(7x)$ будет функция $y=\frac{1}{7}*sin(7x)=\frac{sin(7x)}{7}$.

Б) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная для функции $y=sin(\frac{x}{2})$ будет функция $y=-\frac{1}{\frac{1}{2}}cos(\frac{x}{2})=-2cos(\frac{x}{2})$.

В) Первообразной для $x^3$ служит $\frac{x^4}{4}$, тогда первообразная исходной функции $y=-\frac{1}{2}*\frac{{(-2x+3)}^4}{4}=-\frac{{(-2x+3)}^4}{8}$.

Г) Слегка упростим выражение в степени $\frac{2x+1}{5}=\frac{2}{5}x+\frac{1}{5}$.
Первообразной экспоненциальной функции является сама экспоненциальная функция. Первообразной исходной функции будет $y=\frac{1}{\frac{2}{5}}e^{\frac{2}{5}x+\frac{1}{5}}=\frac{5}{2}*e^{\frac{2x+1}{5}}$.

Теорема. Если $у=F(x)$ - первообразная для функции $y=f(x)$ на промежутке Х, то у функции $y=f(x)$ бесконечно много первообразных, и все они имеют вид $у=F(x)+С$.

Если во всех примерах, которые были рассмотрены выше, требовалось бы найти множество всех первообразных, то везде следовало бы прибавить константу С.
Для функции $y=cos(7x)$ все первообразные имеют вид: $y=\frac{sin(7x)}{7}+C$.
Для функции $y=(-2x+3)^3$ все первообразные имеют вид: $y=-\frac{{(-2x+3)}^4}{8}+C$.

Пример.
По заданному закону изменения скорости тела от времени $v=-3sin(4t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 1,75.
Решение.
Так как $v=S’(t)$, нам надо найти первообразную для заданной скорости.
$S=-3*\frac{1}{4}(-cos(4t))+C=\frac{3}{4}cos(4t)+C$.
В этой задаче дано дополнительное условие - начальный момент времени. Это значит, что $t=0$.
$S(0)=\frac{3}{4}cos(4*0)+C=\frac{7}{4}$.
$\frac{3}{4}cos(0)+C=\frac{7}{4}$.
$\frac{3}{4}*1+C=\frac{7}{4}$.
$C=1$.
Тогда закон движения описывается формулой: $S=\frac{3}{4}cos(4t)+1$.

Задачи для самостоятельного решения

1. Найти первообразные функций:
а) $y=-10sin(x)$.
б) $y=\frac{5}{6}cos(x)$.
в) $y={4x}^5+{3x}^2+5x$.
2. Найти первообразные следующих функций:
а) $y=cos(\frac{3}{4}x)$.
б) $y=sin(8x)$.
в) $y={(7x+4)}^4$.
г) $y=e^{\frac{3x+1}{6}}$.
3. По заданному закону изменения скорости тела от времени $v=4cos(6t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 2.

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной .

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x) .

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x. Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и (sin3x+5 )′=3cos3x , и (sin3x-8,2 )′=3cos3x , ... в общем виде можно записать: (sin3x)′=3cos3x , где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C , где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C .

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x) ,

С — некоторая постоянная величина.

Теперь рассмотренные примеры можно записать так:

1) 2хdx=x²+C. 2) ∫ 3cos3xdx=sin3x+C.

Что же означает знак d?

d — знак дифференциала — имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx; 4) 2pxdp.

3) После значка дифференциала d стоит х х , а р

2хрdx=рх²+С. Сравните с примером 1).

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р . Значит, переменная интегрирования р , а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).

Таблица первообразных

Определение. Функция F(x) на заданном промежутке называется первообразной для функции f(x) , для всех x из этого промежутка, если F"(x)=f(x) .

Операция нахождение первообразной для функции называется интегрированием . Она является обратной к операции дифференцирования.

Теорема. Всякая непрерывная на промежутке функция (x) имеет первообразную на этом же промежутке.

Теорема (основное свойство первообразной). Если на некотором промежутке функция F(x) является первообразной для функции f(x ), то на этом промежутке первообразной для f(x) будет также функция F(x)+C , где C произвольная постоянная.

Из этой теоремы выплывает, что когда f(x) имеет на заданном промежутке первообразную функцию F(x) , то этих первобытных множество. Придавая C произвольных числовых значений, каждый раз будем получать первообразную функцию.

Для нахождения первообразных пользуются таблицей первообразных . Она получается из таблицы производных.

Понятие неопределенного интеграла

Определение. Совокупность всех первообразных функций для функции f(x) называется неопределенным интегралом и обозначается .

При этом f(x) называется подынтегральной функцией , а f(x) dx - подынтегральным выражением .

Следовательно, если F(x) , является первообразной для f(x) , то .

Свойства неопределенного интеграла

Понятие определенного интеграла

Рассмотрим плоскую фигуру, ограниченную графиком непрерывной и неотрицательной на отрезке [а; b] функции f(x) , отрезком [а; b] , и прямыми x=a и x=b .

Полученная фигура называется криволинейной трапецией . Вычислим ее площадь.

Для этого разобьем отрезок [а; b] на n равных отрезков. Длины каждого из отрезков равняются Δx .

Это динамический рисунок GeoGebra .
Красные элементы можно изменять

Рис. 1. Понятие определенное интеграла

На каждом отрезке, построим прямоугольники с высотами f(x k-1) (Рис. 1).

Площадь каждого такого прямоугольника равняется S k = f(x k-1)Δx k .

Площадь всех таких прямоугольников равняется .

Эту сумму называют интегральной суммой для функции f(x) .

Если n→∞ то площадь построенной таким образом фигуры будет все менее отличаться от площади криволинейной трапеции.

Определение. Граница интегральной суммы, когда n→∞ называется определенным интегралом , и записывается так:.

читается: "интеграл от a к b f от xdx "

Число а называется нижним пределом интегрирования, b – верхним пределом интегрирования, отрезок [а; b] – промежутком интегрирования.

Свойства определенного интеграла

Формула Ньютона-Лейбница

Определенный интеграл тесно связан с первообразной и неопределенным интегралом формулой Ньютона-Лейбница

.

Использование интеграла

Интегральное исчисление широко используется при решении разнообразных практических задач. Рассмотрим некоторые из них.

Вычисление объемов тел

Пусть задана функция, которая задает площадь поперечного сечения тела в зависимости от некоторой переменной S = s(x), x[а; b] . Тогда объем данного тела можно найти интегрируя данную функцию в соответствующих пределах.

Если нам задано тело, которое получено вращением вокруг оси Ох криволинейной трапеции ограниченной некоторой функцией f(x), x [а; b] . (Рис. 3). То площади поперечных сечений можно вычислить по известной формуле S = π f 2 (x) . Поэтому формула объема такого тела вращения

Похожие публикации