Интернет-журнал дачника. Сад и огород своими руками

Фотодиоды свойства, схемы включения, применение. Основные характеристики и параметры фотодиода Напряжение смещения фотодиода

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а - схема включения, б - ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 - 30 мкА, у кремниевых 1 - 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.

Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Потапов Л. А.

Принцип действия фотодиода

Полупроводниковый фотодиод - это полупроводниковый диод обратный ток которого зависит от освещенности.

Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

Характеристики фотодиодов

Свойства фотодиода можно охарактеризовать следующими характеристиками:

Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

Постоянная времени - это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

Темновое сопротивление - сопротивление фотодиода в отсутствие освещения.

Интегральная чувствительность определяется формулой:

где 1ф - фототок, Ф - освещенность.

Инерционность

Существует три физических фактора, влияющих на инерционность:

1. Время диффузии или дрейфа неравновесных носителей через базу т;

2. Время пролета через р-n переход т,;

3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, - 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

Расчет КПД фотодиода и мощности

КПД вычисляется по формуле:

где Росв - мощность освещенности; I - сила тока;

U - напряжение на фотодиоде.

Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт

Сила тока, мА

Напряжение, В

Применение фотодиода в олтоэлектронике

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

Оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

Многоэлементные фотоприемники.

Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Как происходит восприятие образов?

Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель - в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом - чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод - только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 - КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

Графическим обозначениям оптронов по ГОСТу присвоен условный код - латинская буква U, после которой следует порядковый номер прибора в схеме.

В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.

Фотодиод может работать в фотодиодном и гальваническом режиме.

В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.
Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

Фотодиодная схема включения.

Приведенная схема включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.
Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.
Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.
Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим.
Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.
Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

Еще одна стандартная схема включения фотодиода показана на рисунке.
В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.
C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 - быстрый керамический 0,1 мкФ, С3, С4 - керамические по 100 пФ, R1 - 8 кОм, R2- 5,6 кОм.

Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой или быстродействующий операционник включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.

Практическая схемотехника включения фотодиода со смещением.



Практическая схемотехника включения фотодиода со смещением.

Величина R фильтра подбирается в зависимости от засвечивания фотодиода в рабочем варианте с установленной оптикой, учитывается направление по азимуту (юг,запад и т.д.) в разных направлениях разные засветки от солнца.
Ёмкость Сф=0.1мкФ ещё и замыкает цепь фотодиода по высокой частоте на землю.
Вместо Rн можно поставить дроссель, либо трансформатор, надо смотреть, не будет ли искажений или затяжек импульсов или прочих подводных камней.

Включение фотодиода в каскад с общей базой.



Схема включения фотодиода ФД 263 в каскад с общей базой.

В схеме с ОБ - база разделяет входную и выходную цепи, и практически исключает влияние выходного напряжения на вход схемы (подобно экранной сетке в пентоде) по-этому имеется возможность увеличить нагрузочное сопротивление и получить больший размах напряжения на выходе схемы без ущерба для скорости.

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Из чего состоит фотодиод?

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Простой фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В сбалансированном состоянии, когда поток излучения стопроцентно отсутствует, концентрация носителей, рассредотачивание потенциала и энергетическая зонная диаграмма фотодиода стопроцентно соответствуют обыкновенной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в итоге поглощения фотонов с энергией, большей, чем ширина нелегальной зоны, в n-области появляются электронно-дырочные пары. Эти электроны и дырки именуют фотоносителями .

При диффузии фотоносителей в глубь n-области основная толика электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Тут фотоносители делятся электронным полем p–n-перехода, при этом дырки перебегают в p-область, а электроны не могут преодолеть поле перехода и накапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обоснован дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей именуется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область негативно по отношению к p-области. Возникающая разность потенциалов именуется фотоЭДС Eф. Генерируемый ток в фотодиоде – оборотный, он ориентирован от катода к аноду, при этом его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из 2-ух режимов – без наружного источника электронной энергии (режим фотогенератора) или с наружным источником электронной энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, нередко используют в качестве источников питания, модифицирующих энергию солнечного излучения в электронную. Они именуются солнечными элементами и входят в состав солнечных батарей, применяемых на космических кораблях и спутниках.

КПД кремниевых солнечных частей составляет около 20 %, а у пленочных солнечных частей он может иметь существенно большее значение. Необходимыми техническими параметрами солнечных батарей являются дела их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти характеристики добиваются значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е врубается в цепь в запирающем направлении (рис. 1, а). Употребляются оборотные ветки ВАХ фотодиода при разных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода.

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам скрещения ВАХ фотодиода и полосы нагрузки, соответственной сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.

Если в фотодиодах использовать обратимый электронный пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а как следует, и чувствительность существенно вырастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими устройствами, их частотный спектр может достигать 10 ГГц. Недочетом лавинных фотодиодов является более высочайший уровень шумов по сопоставлению с обыкновенными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) свойства фоторезистора.

Не считая фотодиодов, используются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Соответствующим недостатком их является высочайшая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обыкновенному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с 2-мя стрелками, направленными к нему.

Светодиоды и фотодиоды нередко употребляются в паре. При всем этом они помещаются в один корпус таким образом, чтоб светочувствительная площадка фотодиода размещалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», именуются оптронами (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких устройствах оказываются электрически никак не связанными, так как передача сигнала осуществляется через оптическое излучение.

Похожие публикации