Интернет-журнал дачника. Сад и огород своими руками

Коническая рупорная антенна с волноводом. Волноводные излучатели и рупорные антенны. Двумерная антенная решётка

    Расчёт директорной антенны………………………………………………3

    Расчёт рупорной антенны…………………………………………………10

    Расчёт однозеркальной параболической антенны………………………17

    Выводы по расчётной работе……………………………………………..24

    Список используемой литературы……………………………………….25

Вибраторные антенны используются в миллиметровом, сантиметровом, дециметровом, метровом и в более длинноволновых диапазонах волн и представляют собой прямолинейные проводники, возбуждаемые в определенных точках. Вибраторные антенны в зависимости от конструкции имеют КНД от нескольких единиц до десятков тысяч и применяются в системах радиосвязи, радионавигации, телевидении, телеметрии и других областях радиотехники.

Для увеличения КНД применяют вибратор с рефлектором и одним или несколькими директорами. Такая антенна называется директорной и широко используется в различных областях радиосвязи в диапазоне УКВ. Чем больше директоров, тем больше КНД и уже главный лепесток ДН. Обычно КНД директорных антенн равен 10...30, но известны конструкции директорных антенн с КНД=80...100.

Рисунок 1.1 - Общий вид директорной антенны

На рисунке изображены активный вибратор длиной , рефлектор длиной , директор длиной , стрела, мачта и антенная монтажная коробка, а также расстояния от вибратора до рефлектора , от вибратора до директора , длина самой антенны .

      Теоретический расчёт параметров антенны.

В директорной антенне длина активного вибратора делается равной резонансной длине:

При такой длине входное сопротивление имеет реактивную часть близкую к нулю. Длина рефлектора должна быть больше резонансной:

Длина директоров делается меньше резонансной:

Причём длина директоров уменьшается от первого к последнему.

Для системы вибратор – рефлектор оптимальное расстояние , с точки зрения максимума КНД, выбирается в пределах:

Для системы вибратор – первый директор:

Расстояние между соседними директорами берётся в пределах:

Длина волны определяется с помощью формулы:

Где – скорость света, а – частота канала. Т.к. у нас заданы 5 – 6 телевизионные каналы, то возьмём среднюю частоту занимаемых частотных полос этих двух каналов: , тогда длина волны из формулы (1.7) будет равна:

Рассчитаем длины вибраторов антенны и расстояние между ними по формулам (1.1 – 1.6):

Общую длину антенны и её изображение на рисунке 1.2 возьмём из программы VIBRAT.

Рисунок 1.2 - Общий вид рассчитанной директорной антенны

Для нахождения ДН директорной антенны в плоскости воспользуемся формулой (1.8):

Где – число вибраторов, k – волновое число, – среднее расстояние между вибраторами.

Подставив (1.9) и (1.10) в (1.8) и численные значения, получим выражение для нахождения ДН заданной директорной антенны:

Нормированную диаграмму направленности построим с помощью пакета Mathcad. Т.к. она симметричная относительно нуля, то построим её для :

Рисунок 1.3 - ДН в плоскости

Из графика можно определить ширину главного лепестка и максимальный уровень боковых лепестков: .

КНД и ширина главного лепестка определяются по формулам (1.10-1.11):

Коэффициенты и определяются из графика на рисунке 1.4:

Рисунок 1.4 - График коэффициентов

Определим волновую длину антенны:

Зная волновую длину антенны и с помощью рисунка 1.4 определим, что . Тогда:

Сравним полученные результаты расчёта с результатами смоделированной в программе рассчитываемой директорной антенны. Результаты имеют небольшое расхождение в связи с тем, что используемые формулы имеют приближённый характер и не учитывают ряд факторов.

Рисунок 1.5 - Директорная антенна, рассчитанная в VIBRAT

      Вывод: рассчитали КНД, ДН и параметры ДН директорной антенны в заданном диапазоне частот. С помощью программы VIBRAT смоделировали данную антенну и убедились в справедливости полученных параметров.


Рис. Типы рупорных антенн: а) Е -секториальный, б) Н -секториальный, в) пирамидальный, г) конический.

Свойства:
Рупорные антенны очень широкополосны и весьма хорошо согласуются с питающей линией - фактически, полоса антенны определяется свойствами возбуждающего волновода. Для этих антенн характерен малый уровень задних лепестков диаграммы направленности (до -40 dB) из-за того, что мало затекание ВЧ-токов на теневую сторону рупора. Рупорные антенны с небольшим усилением просты конструктивно, но достижение большого (>25 dB) усиления требуют применения выравнивающих фазу волны устройств (линз или зеркал) в раскрыве рупора. Без подобных устройств антенну приходится делать непрактично длинной.

Применение:
Рупорные антенны применяют как самостоятельно, так и в качестве облучателей зеркальных и других антенн. Рупорную антенну, конструктивно совмещенную с параболическим отражателем, часто называют рупорно-параболической антенной. Рупорные антенны с небольшим усилением из-за удачного набора свойств и хорошей повторяемости часто используются в качестве измерительных.
На радиотелескопе в Холмдейле, представляющем собой радиометр Дикке на основе рупорно-параболической антенны, Арно Пензиас и Роберт Вудроу Вильсон в 1965 году открыли реликтовое излучение.

Характеристики и формулы:

Пирамидальная рупорная антенна:

Усиление рупорной антенны определяется площадью её раскрыва и может быть расчитано по формуле:
где: - площадь раскрыва рупора.
λ - длина волны основного излучения.
- 0,4....0,8 КИП (коэффициент использования поверхности рупора), равный 0,6 для случая, когда разность хода центрального и перифирийного лучей менее, но близка к Pi/2, и 0,8 при применении выравнивающих фазу волны устройств.

Ширина главного лепестка ДНА H :

Ширина главного лепестка ДНА по нулевому излучению в плоскости E :

Так как при равенстве L E и L H ДНА в плоскости Н получается в 1.5 раза шире, часто, для получения одинаковой ширины лепестка в обоих плоскостях, выбирают:

Для удержания фазовых искажений в раскрыве рупора в допустимых пределах (не более Pi/2) необходимо, чтобы выполнялось условие (для пирамидального рупора):

где и - высоты граней пирамиды, образующей рупор.

По другому источнику:


Где L H - ширина раскрыва в плоскости Н , L E - ширина раскрыва в плоскости Е , R E и R H - длины рупора.

Для такой антенны КНД в упрощенном виде рассчитывается по формуле:

D руп. = 4piνS/λ 2
Где: S = L H * L E - площадь раскрыва рупора;
λ - длина волны основного излучения;
ν = 0,4....0,8 - коэффициент использования поверхности (КИП );

В зависимости от типа рупора, рупорные антенны делятся на Н - и Е - секториальные, пирамидальные и конические. Рупоры, размеры которых соответствуют максимальному значению КНД называются оптимальными. Для оптимальных Н -секториальных рупорных антенн длина рупора R H =L H 2 /3λ , для оптимальных Е -секториальных рупорных антенн R Е =L E 2 /2λ . КИП оптимального Н - и Е -секториального, пирамидального рупоров равен 0,64. Если условно увеличить длину рупора до бесконечности, то КИП антенны увеличится до 0,81.

В коническом рупоре, оптимальная длина R опт. кон . зависит от диаметра его раскрыва d :
R опт. кон. = d 2 /2,4λ + 0,15λ
КИП оптимального конического рупора v =0,5.

Табл. 1.2. Ширина диаграммы направленности рупора с оптимальной длиной.

Тип рупора

Ширина диаграммы направленности в плоскости Н

Ширина диаграммы направленности в плоскости Е

Е-секториальный

2Θ 0,7 =68λ/L H

2Θ 0,7 =53λ/L E

Н-секториальный

2Θ 0,7 =80λ/L H

2Θ 0,7 =51λ/L E

Пирамидальный

2Θ 0,7 =80λ/L H

2Θ 0,7 =53λ/L E

Конический

2Θ 0,7 =60λ/d

2Θ 0,7 =70λ/d

Если взять эллиптический рупор, с соотношением осей эллипса 1,25, то можно получить приблизительно одинаковую ширину диаграммы направленности, во всех сечениях, проходящих через ось рупора.

Достоинством рупорной антенны является ее широкополосность, определяемая широкополосностью питающего волновода, к.п.д. рупорной антенны равен единице.

Недостаток рупорных антенн заключается в необходимости выбора слишком большой длины рупора для получения остронаправленного излучения. Оптимальная длина рупора пропорциональна квадрату размеров раскрыва L H или L E , а ширина диаграммы направленности обратно пропорциональна L H или L E в первой степени. Поэтому для сужения диаграммы направленности рупорной антенны в N раз, ширина раскрыва должна быть увеличена в N раз, а длина рупора - в N2 раз. Это обстоятельство накладывает ограничения на ширину диаграммы направленности рупорных антенн.

Статья на перевод предложена alessandro893 . Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.

Слева – изотропная антенна, справа – направленная

Дипольная антенна




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Антенна в виде несимметричного вибратора (монопольная)


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности


Антенна "волновой канал ", антенна Яги-Уда, антенна Яги


Диаграмма направленности


Уголковая антенна


Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности


Спиральная антенна


Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности


Ромбическая антенна


Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов - 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности


Рупорная антенна


Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности


Параболическая антенна


Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности


Антенна Кассегрена


Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Антенна Грегори



Слева – антенна Грегори, справа - Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Офсетная (асимметричная) антенна


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

Щелевая антенна


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР)



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

Апертурная антенна - антенна, излучающая с раскрыва. Примерами таких антенн являются рупорные, зеркальные, линзовые и другие типы антенн.

Их конструкции и принцип действия аналогичны соответствующим акустическим и оптическим системам. Применяют апертурные антенны от волн короче 1 м вплоть до субмиллиметровых волн. Столь малые длины волн позволяют сконструировать антенны, размеры которых много больше длины волны, и создать остронаправленные антенны сравнительно небольших размеров.

Рупорные антенны

Рупорные антенны - один из основных видов антенн сантиметрового диапазона волн. Простота конструкции, удобство выполнения расчетов при хорошем совпадении теории и эксперимента, отсутствие потерь в тракте питания - вот те преимущества, которые позволяют использовать данный тип антенн для различных практических целей и применять их в качестве эталонных для проведения различных измерений. Единственным недостатком рупорной антенны является ее большая длина. Уменьшить длину рупора можно за счет помещения в ее раскрыв (апертуру) диэлектрической линзы, выравнивающей распределение фазы. Равномерность фазы может быть осуществлено как при использовании однородного диэлектрика за счет изменения его толщины, так и за счет использования неоднородных сред.

Рупорная антенна представляет собой участок волновода переменного (расширяющегося) сечения с открытым излучающим концом. Как правило, рупорную антенну возбуждают волноводом, присоединенным к узкому концу рупора. По форме рупора различают E-секториальные, H-секториальные, пирамидальные и конические рупорные антенны.

Рупорные антенны очень широкополосны и весьма хорошо согласуются с питающей линией -- фактически, полоса антенны определяется свойствами возбуждающего волновода. Для этих антенн характерен малый уровень задних лепестков диаграммы направленности (до -40 dB) из-за того, что мало затекание ВЧ-токов на теневую сторону рупора. Рупорные антенны с небольшим усилением просты конструктивно, но достижение большого (>25 dB) усиления требуют применения выравнивающих фазу волны устройств (линз или зеркал) в раскрыве рупора. Без подобных устройств антенну приходится делать непрактично длинной.

Применение:

Рупорные антенны применяют как самостоятельно, так и в качестве облучателей зеркальных и других антенн. Рупорную антенну, конструктивно совмещенную с параболическим отражателем, часто называют рупорно-параболической антенной. Рупорные антенны с небольшим усилением из-за удачного набора свойств и хорошей повторяемости часто используются в качестве измерительных.

Рис. 1

Усиление рупорной антенны определяется площадью её раскрыва и может быть рассчитано по формуле:

где -- площадь раскрыва рупора, -- КИП (коэффициент использования поверхности рупора), равный 0.6 для случая, когда разность хода центрального и перифирийного лучей менее, но близка к р / 2, и 0.8 при применении выравнивающих фазу волны устройств.

Ширина главного лепестка ДНА по нулевому излучению в плоскости H:

Ширина главного лепестка ДНА по нулевому излучению в плоскости E:

Так как При равенстве L E и L H ДНА в плоскости Н получается в 1.5 раза шире, часто, для получения одинаковой ширины лепестка в обоих плоскостях, выбирают

Для удержания фазовых искажений в раскрыве рупора в допустимых пределах (не более) необходимо, чтобы выполнялось условие (для пирамидального рупора):

где и -- высоты граней пирамиды, образующей рупор.

Элементарным излучателем в них является, как уже отмечалось, элемент Гюйгенса. На рис.1 показана зеркальная антенна с раскрывом S и элементарный излучатель dS. Форму элементарного излучателя можно задать либо в прямоугольных координатах X,Y, либо в полярных в зависимости от формы раскрыва. От этого будет зависеть сложность математических преобразований при определении параметров антенны.

Свойства

Рупорные антенны очень широкополосны и весьма хорошо согласуются с питающей линией - фактически, полоса антенны определяется свойствами возбуждающего волновода. Для этих антенн характерен малый уровень задних лепестков диаграммы направленности (до -40 dB) из-за того, что мало затекание ВЧ-токов на теневую сторону рупора. Рупорные антенны с небольшим усилением просты конструктивно, но достижение большого (>25 dB) усиления требуют применения выравнивающих фазу волны устройств (линз или зеркал) в раскрыве рупора. Без подобных устройств антенну приходится делать непрактично длинной.

Применение

Рупорные антенны применяют как самостоятельно, так и в качестве облучателей зеркальных и других антенн. Рупорную антенну, конструктивно совмещенную с параболическим отражателем, часто называют рупорно-параболической антенной. Рупорные антенны с небольшим усилением из-за удачного набора свойств и хорошей повторяемости часто используются в качестве измерительных.

Характеристики и формулы

Пирамидальная рупорная антенна

Усиление рупорной антенны определяется площадью её раскрыва и может быть рассчитано по формуле:

Где - площадь раскрыва рупора, -- КИП (коэффициент использования поверхности рупора), равный 0.6 для случая, когда разность хода центрального и перифирийного лучей менее, но близка к , и 0.8 при применении выравнивающих фазу волны устройств.

Ширина главного лепестка ДНА по нулевому излучению в плоскости H:

Ширина главного лепестка ДНА по нулевому излучению в плоскости E:

Так как При равенстве и ДНА в плоскости Н получается в 1.5 раза шире, часто, для получения одинаковой ширины лепестка в обоих плоскостях, выбирают

Для удержания фазовых искажений в раскрыве рупора в допустимых пределах (не более ) необходимо, чтобы выполнялось условие (для пирамидального рупора):

Где и - высоты граней пирамиды, образующей рупор.

Типы рупорных антенн

Облучатель параболической антенны в виде конического рупора с канавками

  • Пирамидальный рупор - антенны в форме четырехгранной пирамиды, с прямоугольным сечением. Они являются наиболее широко используемый типом рупорных антенн. Излучает линейно-поляризованные волны.
  • Секторальный рупор - пирамидальные рупора с расширение только в одной плоскости Е или Н.
  • Конический рупор - раскрыв в форме конуса с круглым сечением. Используются с цилиндрическими волноводами для получения волны с круговой поляризацией.
  • Гофрированные рупора - раскрыв рупоров с параллельными щелями или канавки, малой по сравнению с длиной волны. Канавки покрывают внутреннюю поверхность рупора, поперек оси.

Гофрированные рупора имеют более широкую полосу пропускания, меньший уровень боковых лепестков и кросс-поляризации. Они широко используются в качестве облучателей для спутниковых параболических антенн и радиотелескопов.

Рупорно-параболическая антенна

Рупорно-параболическая антенна - тип антенны, а которой конструктивно связаны парабола и рупор. Преимуществом этой конструкции по сравнению с рупорной - низкий уровень боковых лепестков и узкая диаграмма направленности. Недостатком - больший вес чем в параболических антеннах. Примером использования является рупорно-параболическая антенна в космической станции Мир, антенны для радиорелейных станций.

Настройка антенны

Настройка КСВ антенны производится в ее волноводной части или в КВП выбором положения и размеров запитки КВП. Настройка в волноводной части производится штырями или диафрагмами.


Wikimedia Foundation . 2010 .

Смотреть что такое "Рупорная антенна" в других словарях:

    Антенна в виде отрезка радиоволновода, расширяющегося к открытому концу. Форма раскрыва рупора выбирается в соответствии с требуемой диаграммой направленности (рис.). Согласование Р. а. с открытым пр вом определяется размером раскрыва, формой и… … Физическая энциклопедия

    рупорная антенна - Антенна в виде волновода с плавно расширяющимся поперечным сечением в сторону открытого конца. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины антенны … Справочник технического переводчика

    Состоит из металлического расширяющегося раструба (рупора) и подсоединенного к нему волновода. Используют для направленного излучения и приема радиоволн сверхвысоких частот диапазона, в основном в качестве облучателей, напр. зеркальных антенн … Большой Энциклопедический словарь

    рупорная антенна - 3.9 рупорная антенна: Антенна, образованная расширением стенок волновода, питающего ее. Источник … Словарь-справочник терминов нормативно-технической документации

    Состоит из металлического расширяющегося раструба (рупора) и подсоединённого к нему волновода. Используют для направленного излучения и приёма радиоволн СВЧ диапазона, в основном в качестве облучателей, например зеркальных антенн. * * * РУПОРНАЯ… … Энциклопедический словарь

    рупорная антенна - ruporinė antena statusas T sritis fizika atitikmenys: angl. horn aerial; horn antenna; horn type antenna vok. Hornantenne, f; Trichterantenne, f rus. рупорная антенна, f pranc. antenne à cornet, f … Fizikos terminų žodynas

    Антенна, состоящая из металлического расширяющегося раструба (рупора) и подсоединённого к нему Радиоволновода. Р. а. применяют для направленного излучения и приёма радиоволн (См. Излучение и приём радиоволн) СВЧ диапазона в качестве… …

    Рупорная антенна - 1. Антенна в виде волновода с плавно расширяющимся поперечным сечением в сторону открытого конца Употребляется в документе: ГОСТ 24375 80 … Телекоммуникационный словарь

    биконическая рупорная антенна - dvikūgė ruporinė antena statusas T sritis radioelektronika atitikmenys: angl. biconical horn antenna vok. Doppelkonushornantenne, f rus. биконическая рупорная антенна, f pranc. cornet double, m … Radioelektronikos terminų žodynas

    Устройство для излучения и приёма радиоволн. Передающая А. преобразует энергию электромагнитных колебаний высокой частоты, сосредоточенную в выходных колебательных цепях радиопередатчика, в энергию излучаемых радиоволн. Преобразование… … Большая советская энциклопедия

Похожие публикации