Интернет-журнал дачника. Сад и огород своими руками

Как выбрать смартфон с лучшей фотокамерой. Фотографируем смартфоном: апертура камеры

Все любят фотографировать на мобильный телефон, но встроенная фотокамера в каждом имеет свои различия, поэтому важно понимать, что означает каждая спецификация. Тогда вы выберите смартфон, фотокамера в котором удовлетворит ваши потребности.

В этой статье мы углубимся в значения многих функций, чтобы вы могли судить о возможностях камеры, читая описание или обзор технических характеристик.

Диафрагма

Диафрагма объектива - это отверстие, через которое свет проходит к датчику и оно обозначено числовой величиной F (например, f/2.0 или F/2.8). Чем меньше диафрагменное число, тем крупнее отверстие и тем больше света проходит через объектив, и тем лучше производительность фотокамеры во время съёмки в условиях с низким освещением. Число F, которое вы видите в спецификациях, это максимально возможное значение диафрагмы для данного фокусного расстояния (о фокусном расстоянии ниже).

К примеру, если камера снимает при F/5.6, то она захватывает меньше света, чем при F/2.0. Объектив 29 мм F/2.2 в iPhone 6 можно назвать «светосильным», это означает, что с ним вы сможете снимать при более высокой скорости затвора. Чем выше светосила объектива (чем меньше диафрагменное число), тем лучше он приспособлен для съёмки недостаточно освещённых сцен. Поэтому выбирайте фотокамеру, у которой наименьшее диафрагменное число (F/2.2 лучше, чем F/2.8).

В таких зуммирующих фотокамерах как в смартфонах Galaxy K Zoom и Galaxy S4 Zoom, чаще всего вы получаете две пары чисел с фокусным расстоянием. При этом иногда в них указана постоянная апертура, но это больше характерно для обычных цифровых фотоаппаратов, а не для смартфонов.

Фотокамера в Samsung Galaxy K Zoom оснащена объективом 24-240 мм F/3.1-6.4. Это называется переменная диафрагма. Первое диафрагменное число (F/3.1) означает максимальную диафрагму при съёмке с максимально широким углом (24 мм), а второе значение F (F/6.4) говорит о максимальном открытии диафрагмы при съёмке на теле-конце (240 мм). При масштабировании, изменении фокусного расстояния, диафрагма тоже изменяется.

Так же важно отметить, что в фотокамерах с большим датчиком, значение диафрагмы влияет на глубину резкости. Так на большой диафрагме можно получить небольшую глубину резкости, сделав таким образом красивый размытый фон, так называемое "боке". К сожалению, с маленьким датчиком, который в большенстве мобильных устройств, такой эффект получить практически невозможно.


Диафрагма F/2.8.

При увеличении диафрагменного числа до F/11, отверстие уменьшается и глубина резкости увеличивается, как на примере ниже.

Фокусное расстояние

Фокусным называют расстояние от оптического центра объектива до плоскости изображения, в телефонных камерах это означает до датчика изображения.

При масштабировании изменяется оптический центр зум-объектива, поэтому изменяется и значение фокусного расстояния. ФР также говорит нам об угле зрения, что особенно важно. Для простоты, смотрите на эквивалентное фокусное расстояние объектива, которое учитывает размер датчика и даёт вам ФР в 35 мм эквиваленте. Такой показатель можно сравнить среди различных фотокамер.

Эквивалентное фокусное расстояние говорит о том, насколько широк объектив. Вы можете использовать этот конвертер , чтобы понимать о каком угле обзора идёт речь при определённом ФР в 35-мм эквиваленте. Чем короче фокусное расстояние, тем шире поле зрения.
Так, например:

IPhone 6 / iPhone 6 Plus: 29 мм (в 35 мм эквиваленте)
Galaxy S5: 31 мм (в 35 мм эквиваленте )

Можно сказать, что с iPhone 6 и iPhone 6 Plus поле зрения шире, так как 29 мм переводится в 73.4 градуса, а 31 мм – в 69.8 градусов.

При меньшем значении фокусного расстояния фотокамера может охватывать более широкую область сцены (по вертикали и горизонтали). Это очень удобно для съёмки групповых кадров, интерьеров, архитектуры, селфи и т.д. Вот почему производители смартфонов наделяют объектив фронтальной камеры меньшим фокусным расстоянием, – чтобы сделать её более подходящей для автопортретов.

Объективы с фиксированным фокусным расстоянием называют «фиксами». Это означает, что в фотокамере нет масштабирования.

В смартфонах Galaxy Zoom переменное фокусное расстояние. Например, Galaxy S4 Zoom оснащён объективом 24-240 мм F/3.1-6.4. Таким образом, 24 мм – это фокусное расстояние на широком угле, а 240 мм – на теле-конце. Конечно, диафрагма, как мы упоминали выше, максимально открыта в широкоугольном положении и минимально на теле-конце.


Видео Майка Брауна.

К слову, оптический зум рассчитывают путём деления максимального фокусного расстояния на кратчайшее. Например, в случае S4 Zoom мы делим 240 на 24 и получаем 10. Другими словами, S4 Zoom обладает 10-кратным оптическим зумом.

Размер датчика

Размер сенсора играет ключевую роль в производительности фотокамеры. Принято считать, что чем больше датчик, тем выше качество изображения. Почти всегда так оно и есть. К крупному сенсору производители могут применить больше технологических достижений, которые невозможно либо дорого внедрить в небольшие датчики. Тем не менее, среди исключительно важных спецификаций сенсора находится размер пикселей.

Пиксели измеряются в микрометрах (мкм) или микронах (μ). Некоторые производители смартфонов предоставляют этот показатель, поскольку всё больше людей осознают влияние размера пикселя на качество изображения и производительность при низкой освещённости.

Чем больше размер пикселя (фотодиод, светосила пикселей), тем выше его способность собирать свет.

Вы можете найти две камеры, сенсоры которых одинакового размера, но с различным разрешением. Здесь вам нужно определиться, выбираете ли вы низкое разрешение с крупными пикселями (например, HTC One UltraPixel) или более высокое разрешение, но с пикселями помельче. В разных фотокамерах размеры датчиков и их разрешение будут различаться.

Возможно, вам попадётся фотокамера с большими пикселями, которая при этом будет уступать в производительности при низком освещении другой камере, так как здесь важное место занимают сенсорные технологии и обработка изображений.

Например, датчики с технологией задней подсветки BSI (Back Side Illuminated) используют уникальный дизайн, значительно повышающий чувствительность к свету. В датчике BSI проводки, ответственные за передачу данных, расположены позади светочувствительной области, что позволяет производителям создавать маленькие сенсоры с большим количеством пикселей. На датчиках FSI (Front illuminated) проводки находятся спереди, занимая пространство, на котором могли разместиться крупные фотодиоды.

Датчики нового поколения демонстрируют своё превосходство над более ранними, сенсорная технология продолжает улучшаться. Смартфон HTC One UltraPixel с пикселями в 2.0 микрона не всегда приводит к более высокой производительности при низком освещении по сравнению с датчиками, чьи пиксели мельче. В настоящее время первое место занимает iPhone 6 Plus с датчиком разрешением 8 Мп и пикселями в 1.5 мкм на DxOMark. TheHTC One M8 находится на 18-ом месте, значительно уступая даже фотокамере в Samsung Galaxy S5 (3-е место), в которой 16-мегапиксельный сенсор с пикселями размером 1.12 микрон.

Размер сенсора в связке с характеристиками объектива влияет на глубину резкости. При одинаковой диафрагме более крупный датчик даст возможность достигать меньшей глубины резкости, то есть более выраженного боке. Эффект расфокусированного фона поможет выделить объект съёмки от элементов заднего фона.

Чтобы получить более размытый фон, вам нужен смартфон, в фотокамере которого крупный сенсор и большая апертура.

Размер сенсора указывают в списке спецификаций, он может быть 1/2.3", 1/2.5", 2/3" и т.д. Это означает, что такова его диагональ, но не всем легко таким образом сравнить размеры датчиков. Вы можете обратиться к онлайн-инструменту для сравнения размеров сенсоров cameraimagesensor.com или открыть статью на сайте Википедия , в которой перечислены самые популярные типы датчиков с их эквивалентной шириной и высотой в миллиметрах.

Вы можете увидеть, что Nokia Lumia 1020 имеет сравнительно очень крупный датчик (2/3-дюймовый = 8.80x6.60 мм); Nokia Lumia 720 (1/3.6-дюймовый = 4.00×3.00 мм).

В следующий раз, когда вы соберётесь покупать смартфон, просматривая спецификации фотокамеры, не забудьте взглянуть на размер пикселя и габариты сенсора. Большинство современных камерофонов оснащены сенсорами BSI. В некоторых более передовые технологии, чем в других.

Стабилизация изображения

Стабилизация изображения – один из важнейших аспектов многих современных телефонных камер. Есть цифровая стабилизация изображения и оптическая. С системой оптической стабилизации фотокамера компенсирует движения рук и дрожь путём смещения элементов объектива в сторону, противоположную направлению движения, что приводит к более чётким изображениям.

Изображения из патентной заявки от Apple, в которой описывается метод для интеграции оптической стабилизации в миниатюрных камерах.

При съёмке с рук неизбежны мелкие движения, которые могут привести к смазанному снимку. Если вы установите телефон на устойчивую поверхность, такое беспокойство отпадёт. Но с мобильным телефоном большую часть времени вы снимаете с рук. Для того, чтобы получить чёткое изображение, придерживайтесь эмпирического правила выдержки, которое гласит: знаменатель выдержки должен быть не меньше числа, обозначающего фокусное расстояние в 35-милиметровом эквиваленте. То есть, чтобы получить резкое изображение при съёмке с 30-мм объективом (в эквив.), вам нужно установить скорость затвора на 1/30 сек.

Статьи мы рассмотрели основную часть любой камеры - матрицу. Во второй же поговорим о не мене важных параметрах фотомодуля смартфона. Поехали!

Диафрагма объектива или еще одно обозначение - светосила. Грубо говоря - это отверстие, через которое свет попадает на сенсор камеры. И от его размера напрямую зависит качество фотографии. Чем диафрагменное число меньше, тем больше это отверстие и выше светосила объектива. В условия недостаточной освещенности очень большую роль играет то, сколько света попадает на матрицу. Диафрагменное число обозначается латинской буквой f и, как правило, прописывается в следующем виде - f/2.0, f/3.5. Число после «слеша» и есть значением диафрагмы. В основном в камерах смартфонов этот параметр фиксированный. Если же объектив имеет оптический зум, то значений светосилы может быть два - одно при нормальном состоянии и другое при максимальном зуме. Подводя итог нужно сказать, что фотомодуль надо выбирать с наименьшим диафрагменным числом. Этот параметр производитель, как правило, не прячет и его можно найти в описании смартфона. Например, у Samsung Galaxy S6 диафрагма f/1.9, Apple iPhone 6s - f/2.2, Xiaomi Mi Note - f/2.0.

Фокусное расстояние - расстояние между оптическим центром объектива и матрицей. От этого параметра зависит угол зрения камеры. Чем меньше фокусное расстояние, тем больше угол съемки и, соответственно, больше объектов попадает в кадр. Если же оно большое, то все предметы будут визуально ближе и больше.

Измеряется фокусное расстояние в миллиметрах и бывает фиксированное (в большинстве камер смартфонов) и изменяемое - о таких фотокамерах мы говорим, что они могут зумировать, то есть приближать объекты при фотографировании. Это параметр зачастую можно увидеть на самом объективе. Приведу некоторые примеры: Sony Z5 - 23 мм, Huawei P8 - 28 мм, а вот у Galaxy S4 Zoom - 24-240 мм.

В идеале разные фокусные расстояния применяются для разных задач: широкоугольные (20-35 мм) - для съемок пейзажей, 70-135 мм - хорошо подходят для портретов, телеобъективы (135 мм и выше) - для спорта, дикой природы. Размеры смартфона в этом плане накладывают ограничения, но их призваны побороть всевозможные объективы-насадки.

Еще фотообъективы могут отличаться уровнем и характером оптического искажения , например, существует такой тип, как «рыбий глаз», который позволяет снимать довольно интересные панорамы.

Конечно, качество изготовления самого объектива и материалов также имеет непосредственное влияние на получаемые фотографии.

Стабилизация изображения . На смартфон в 99 случаев из 100 мы снимаем с рук. При ярком свете камера устанавливает очень короткую выдержку и легкое смещение камеры не вредит снимку, но если снимать вечером или в помещении, велик риск получить смазанный кадр. Чтобы этого не происходило, современные камеры оснащают стабилизацией изображения. Она бывает нескольких видов:

  • оптическая - стабилизируется сенсор или объектив
  • цифровая - изображение стабилизируется программными методами
  • гибридная - когда используется связка двух вышеописанных метода

Цифровая присутствует фактически всегда, это норма. Оптическая стабилизация более дорогая, но ее качество несравненно выше. Гибридная же в смартфонах на сегодняшней день не используется (могу ошибаться).

Вспышка . В условиях недостаточной освещенности она может здорово помочь получить хороший снимок. В смартфонах представлены два основные типы вспышек:

  • ксеноновая - высокая светимость, свет близкий к натуральному, но большая себестоимость, габариты, энергозатраты. А также ее нельзя применять для постоянной подсветки
  • светодиодная - энергоэффективная, можно использовать для подсветки видео и в качестве фонарика, но в то же время не такая хороша светимость, как у ксеноновой

В топовых смартфонах часто используют двойную светодиодную вспышку, а в некоторых моделях вспышек может быть две - светодиодная и ксеноновая.

Программная часть . Отвечает за формирование и обработку цифрового изображения. Очень важная часть общей системы фотомодуля. Ведь какой бы большой ни была матрица и насколько светосильным объектив, программная обработка может как испортить любую фотографию, так и ощутимо улучшить. Результат зависит от многих факторов: взаимодействия программного обеспечения камеры с прошивкой, способа обработки фотографии, приложения, с помощью которого происходит съемка.

При передаче изображения с матрицы в приложение камеры смартфона оно может подвергаться цветокоррекции, ретуши, шумоподавлению (иногда слишком усердном, что приводит к “замыливанию” фотографии). И само приложение имеет множество функций и параметров съемки и обработки фотографии. Их обзор заслуживает отдельной статьи.

Мы рассмотрели основные характеристики камер смартфонов, давайте же подведем краткие итоги:

  1. Матрица - это как раз тот случай, когда размер имеет значение. Чем больше сенсор, тем лучше. Но размер матрицы может нивелироваться слишком большим количеством мегапикселей. Должен быть разумный компромисс.
  2. Диафрагменное число - чем меньше значение, тем выше светосила объекта. Этот параметр особенно важен при съемке в условиях недостаточной освещенности.
  3. Фокусное расстояние - для каждой сцены есть свой предпочитаемый фокус. Нельзя сказать, что широкоформатным объективом не получится снять портрет. Но все же он выйдет хуже нежели с подходящим фокусным расстоянием. Самые универсальные - это объективы с изменяемым фокусом.
  4. Оптическая стабилизация - призвана сгладить дрожание камеры. Но при плохом освещении она не сможет нам помочь, так как камера будет снимать на длинной выдержке. В таких случаях лучше всего использовать подставку для смартфона, например - монопод.
  5. Вспышка - хорошо если она есть, а еще лучше, когда их две - ксеноновая и светодиодная.
  6. Программная часть. Во-первых, это алгоритмы обработки информации, полученной матрицей камеры. Даже при не очень хорошем железе качественный софт способен обеспечить хорошего качества снимки и видео. Во-вторых, собственно утилита съемки. Она не так сильно сказывается на результате, но влияет на удобство и список доступных возможностей. Например, позволяет снимать в ручном режиме.

Прошли те времена, когда камера в телефоне считалась диковинкой. Современные смартфоны умеют делать снимки как минимум не хуже дешевых фотоаппаратов, снимать отличное видео в высоком разрешении. Да, до хороших камер им далеко, но зато у них есть одно неоспоримое преимущество - они всегда под рукой!

Статьи и Лайфхаки

Нередко в сети можно встретить суждения о том или ином гаджете, мол, диафрагма у него получше, или наоборот – похуже.

Кому-то понятно, о чем речь, а кто-то просто не представляет, что же такое эта самая диафрагма, и для чего она нужна в смартфоне.

Мы постараемся внести в вопрос максимальную ясность.

Диафрагма и диафрагменное число

Для начала – немного буквоедства. Обычно, когда говорят о диафрагме, подразумевают именно диафрагменное число – оптическую меру светопропускания объектива камеры. Именно она обозначается в спецификациях, например, f/2.0.

Сам же конструктивный элемент в большинстве случаев никакого интереса не представляет, поскольку в камерах смартфонов он статичный – просто пластина с отверстием, в отличие от фотоаппаратов, в которых предусмотрено изменение .

Правда, буквально в последние несколько месяцев появилась модель , в которой диафрагма тоже способна менять светопропускание, но об этом мы поговорим позже.

Смысл диафрагменного числа


Следует понимать, что диафрагменное число – величина относительная, т.е., к конкретному устройству не привязанная. Занудную математику мы опустим, кому интересно – всегда может открыть учебник.

Для нас важно то, что оно соответствует относительному отверстию объектива. Чем это отверстие больше, тем больше света может проходить сквозь диафрагму.

Поскольку мы имеем дело с дробью, то у камеры с f/1.7 светосила будет выше, чем, например, с f/2.4.

В общем случае, чем больше света попадает на сенсор, тем меньше необходимость в программном усилении сигнала от него, а значит – меньше будет разнообразных шумов. С другой стороны, важны условия освещенности, при которых ведется фотосъемка.

Ночью объектив со слабой светосилой будет бесполезен – на снимке получится почти однотонная чернота. Днем слишком большое количество света, проходящего через диафрагму, вызовет «засветку».

Конечно, программная обработка позволяет сгладить многие моменты, но общая тенденция примерно такова.

В фотоаппаратах эти проблемы решаются механическим изменением апертуры, в результате чего диафрагменное число может меняться в очень широких пределах. В гаджетах в силу конструктивных ограничений это очень проблематично.

Кроме светосилы, данная величина связана и с фокусным расстоянием.

Не напрямую, но косвенно – это касается возможности получения фото с эффектом боке, при котором фон размывается, подчеркивая центральный объект съемки, например, человека.

Помимо самого , для качественного размытия необходима достаточная светосила. Отчасти эта проблема решена с использованием .

Несмотря на относительность величины, сравнивать диафрагменное число можно только у соизмеримых по конструкции камер. Зеркальный фотоаппарат с f/15-f/13 улавливает количество света, примерно, соответствующее смартфону с апертурой f/2.0.

Какое диафрагменное число лучше для смартфона


Тенденция развития камер мобильных устройств показывает изменение к меньшим значениям.

Еще несколько лет назад нормой были объективы с f/2.4, постепенно их вытеснили модели с f/2.0, а вот последние флагманские устройства имеют уже камеры с f/1.8-f/1.7.

Массовое распространение двойных модулей позволило частично избавиться от проклятья универсальности, при котором всё делается одинаково плохо.

Теперь разработчикам не составляет труда использовать в основном модуле оптику с высокой светосилой, а в дополнительном – с низкой.

В то же время крупные производители мобильных устройств не оставляют попыток экспериментировать и с механикой камер. Основной целью является получение высокой кратности, но есть модели и с переменной светосилой.

Например, в флагманских моделях Samsung диафрагменное число может меняться, правда, всего в двух дискретных позициях: f/1.5 и f/2.4.

Но даже это – уже серьезное достижение по сравнению с фиксированной диафрагмой смартфонов прежних лет.

Итог

При прочих равных более предпочтительным будет смартфон, у которого диафрагменное число меньше.

Как правило, дешевых моделей с большой светосилой камер не бывает, так что этот показатель вполне можно принимать в качестве одного из существенных критериев при выборе камерофона.

Термин «мегапиксель» можно расшифровать как один миллион пикселей. То есть 12-мегапиксельная камера делает снимки, которые состоят из 12 миллионов крохотных точек. Чем больше этих точек (пикселей) в изображении, тем чётче оно выглядит, тем выше его разрешение.

Из этого можно сделать вывод, что камера с большим количеством мегапикселей снимает лучше той, у которой их меньше. Но это не совсем так.

Проблема в том, что в наше время имеют больше мегапикселей, чем нужно. Давайте вспомним про экраны: FullHD-телевизор имеет разрешение 2,1 мегапикселя, а новейший 4K-телевизор - 8,3 мегапикселя. Учитывая, что в камере почти каждого современного смартфона можно насчитать более 10 мегапикселей, дисплеи просто не могут отображать столь высокое разрешение в полной мере.

Вряд ли вы заметите разницу между фотографиями современных камер с разным количеством мегапикселей, поскольку даже новейшие экраны не поддерживают таких разрешений.

На самом деле преодоление отметки в 8,3 мегапикселя может быть полезным, если вы намерены кадрировать снимки. Другими словами, сделав фото с помощью 12-мегапиксельной камеры, вы можете отрезать от него значительный фрагмент. При этом разрешение снимка всё равно может остаться выше, чем у 4K-телевизора.

Совет . Не гонитесь за камерами, которые насчитывают больше 12 мегапикселей. Этого количества хватит с запасом, если только вы не собираетесь разрезать снимки на фрагменты или редактировать их в профессиональных целях.

Размер пикселя важнее

Показатель, который точнее характеризует камеру смартфона, - это размер пикселя. В общем списке характеристик его числовое значение указывают в микрометрах перед сокращением µm. Камера смартфона с размером пикселя 1,4µm почти всегда снимает лучше другой с размером 1,0µm.

Если достаточно приблизить фотографию, на ней можно разглядеть отдельные пиксели. Цвета этих мелких точек определяются микроскопическими сенсорами света внутри камеры смартфона.

Эти сенсоры тоже называют пикселями, поскольку каждый из них захватывает свет для соответственного пикселя на изображении. Таким образом, если в вашей камере 12 мегапикселей, она имеет 12 миллионов светочувствительных пикселей.

Каждый сенсор запечатлевает частицы света, известные как фотоны, и определяет с их помощью цвет и яркость пикселя на снимке. Но фотоны очень активны, и захватить их не так просто. К примеру, вместо синей частицы сенсор может поймать красную. В итоге вместо пикселя одного цвета на изображении окажется точка другого.

Чтобы избегать таких неточностей, светочувствительный пиксель ловит по несколько фотонов сразу, а специальное ПО высчитывает на их основе правильные оттенок и яркость точки на итоговом фото. Чем больше площадь пикселя, тем больше фотонов он может захватить, тем точнее будут цвета на финальном изображении.

Совет . Остановитесь на камерах, которые имеют не более 12 мегапикселей. Большее число вынуждает производителя жертвовать размером пикселей, чтобы вместить всё в ограниченном пространстве. Сравнивая камеры с равным количеством мегапикселей, выбирайте ту, размер пикселей в которой больше.

Апертура

Другая важная характеристика камеры, которой не стоит пренебрегать, - это апертура. Её указывают с помощью символа f, поделённого на числовое значение. К примеру: f/2,0. Поскольку f делят на число, то чем оно меньше, тем лучше апертура.

Чтобы понять смысл апертуры, вспомните о размере пикселя. Чем он крупнее, тем больше частиц света захватывает камера, тем точнее цветопередача. Теперь представьте, что пиксель - это ведро, а фотоны - капли дождя. Выходит, чем шире ведро (пиксель), тем больше капель (фотонов) в него попадает.

Апертура напоминает воронку для этого ведра. Её нижняя часть совпадает по диаметру с ведром, но верхняя - гораздо шире, что помогает собрать ещё больше капель. Как следует из аналогии, широкая апертура позволяет сенсору захватить больше частиц света.

Конечно, в реальности никакой воронки нет. Этого эффекта достигают за счёт линзы, с помощью которой камера захватывает больше света, чем способны уловить её пиксели.

Основное преимущество широкой апертуры заключается в том, что благодаря ей камера лучше снимает в условиях низкой освещённости.

Когда света слишком мало, светочувствительные пиксели могут не захватить достаточного количества фотонов. Но широкая апертура решает эту проблему, открывая доступ к большему количеству частиц.

Совет . Не забывайте, меньшее число означает более широкую апертуру. Так что делайте выбор в пользу камер со значением f/2,2 и ниже, особенно если часто фотографируете ночью или внутри помещений.

Стабилизация изображения: EIS и OIS

Среди прочих характеристик камеры вы можете найти стабилизацию изображения двух видов: оптическую - OIS (Optical Image Stabilization) и электронную - EIS (Electronic Image Stabilization).

Когда сенсор камеры движется из-за дрожания руки, OIS стабилизирует изображение физически. Если вы, к примеру, ходите во время съёмки видео, каждый шаг обычно меняет положение камеры. Но OIS сохраняет относительную стабильность сенсора, даже если вы трясёте смартфоном. В результате технология минимизирует дрожь на видеозаписях и размытие на снимках.

Наличие оптической стабилизации сильно повышает стоимость устройства и требует немало пространства для дополнительных деталей. Поэтому вместо неё в смартфоны часто внедряют электронную стабилизацию, которая создаёт похожий эффект.

EIS обрезает, растягивает изображения и меняет перспективу отдельных кадров, из которых состоит видео. Это происходит программно и уже с отснятым материалом, поэтому электронную стабилизацию можно применять даже к роликам, записанным на камеры с OIS, чтобы делать их ещё более плавными.

По большому счёту, иметь камеру с оптической стабилизацией лучше. Ведь электронная обработка кадров может снизить качество и создать эффект желе на видео. К тому же EIS почти не уменьшает степень размытия на снимках. Но стоит отметить, электронная стабилизация не перестаёт развиваться, что подтверждает качество роликов, снятых на аппараты .

Совет . Если можете, выбирайте устройства с оптической стабилизацией, если нет - останавливайтесь на электронной. Игнорируйте аппараты, которые не поддерживают ни OIS, ни EIS.

Мы писали ранее.) Ее важнейшей функцией является глубина резкости: так, например, благодаря апертуре можно сделать фон размытым, выделив при этом объект, или же наоборот, оставить все в фокусе.

1. Что такое апертура?

Выражаясь простым языком, апертура это отверстие в объективе, через которое проходит свет, попадающий на сенсор. По принципу работы она в каком-то роде похожа на человеческий глаз. И если проводить подобную аналогию с самой камерой, то получается, что линза выполняет функцию роговицы – она собирает весь видимый свет, отправляя его через радужную оболочку, которая в свою очередь расширяется или уменьшается в зависимости от количества поступающего света, контролируя таким образом диаметр зрачка. Сам же зрачок это нечто вроде дыры, через которую и проходит свет дальше, вглубь глаза, где и попадает на сетчатку. Так, получается, что апертура и зрачок выполняют одинаковую функцию: свет проходит через апертуру и попадает на сенсор камеры, аналогично зрачку и сетчатке. Чем больше диаметр апертуры – тем больше света попадает на сенсор. И точно так же, чем больше диаметр зрачка, тем больше света попадает на сетчатку.

2. Диаметр апертуры

Аналогом радужной оболочки, контролирующей размер апертуры, в оптике называется диафрагмой. Функция диафрагмы заключается в том, чтобы благодаря увеличению и уменьшению диаметра апертуры, ограничивать количество света, попадающего на фотосенсор.
В фотографии апертура измеряется в f-числах или в f-стопах, и чем меньше значение f-стопа, тем больше размер апертуры. Многие люди находят это сбивающим с толку, ведь обычно большее число подразумевает большее значение, но не в этом случае. Так, f/1.4 больше, чем f/2.0 и еще больше, чем f/8.0.
Для четкого понимания лучше взглянуть на иллюстрацию ниже:


Взаимоотношение размера апертуры к значению f-стопа.

3. Глубина резкости

Еще одна вещь, которую нужно знать об апертуре, это глубина резкости - область фотографии, которая находится в фокусе:
Если f-число равно f/32, то в фокусе будут находиться как передний, так и задний планы. Если же выбрать значение f/1.4, то задний план окажется размытым, оставляя в фокусе лишь объекты переднего плана. Это явно видно на изображениях ниже:


Левая фотография сделана с f-числом равным f/2.8, а правая с f/8.0

Как видно из этого примера, даже небольшое изменение f-числа с f/2.8 до f/8.0 довольно сильно влияет на глубину резкости. И если бы я использовал f-стоп, равный f/32, то фон оказался бы таким же четким, как и WALL-E на втором снимке.
Еще один пример:


Почтовые ящики – апертура равна f/2.8

На фотографии выше, благодаря малой глубине резкости, лишь слово «Cougar» оказалось в фокусе, оставив пространство впереди и позади надписи размытым. Если же в данном случае использовалось f-число, равное f/1.4 и камеру бы сфокусировали на буквах, то только одна буква и была бы в фокусе.

4. Диафрагма объектива: Максимум и минимум


У каждого объектива есть свой лимит максимального и минимально возможного диаметра апертуры. Увидеть эти значения можно в спецификациях вашего устройства, они обычно обозначаются как Lowest f-number (Наименьшее f-число) и Highest f-number (Наивысшее f-число).

Внимание стоит обратить на максимальное значение, так как оно показывает насколько быстр ваш объектив. Так, объектив с наивысшим f-числом, равным где-то f/1.2 или f/1.4 считается быстрым, так как может пропустить больше света, чем, например, объектив с диафрагмой f/4.0. Поэтому объективы с большой апертурой более пригодны для фотографии в условиях недостаточной освещенности. Кроме того, широкая апертура позволяет лучше изолировать предметы переднего плана от заднего фона. Так что при покупке объектива следует внимательно отнестись к этим параметрам.

Наименьшее же значение диафрагмы не настолько важно, так как почти все современные фотоаппараты имеют апертуру равную как минимум f/16 – чего вполне достаточно для обыкновенной каждодневной съемки.

Похожие публикации