Интернет-журнал дачника. Сад и огород своими руками

Их помощью можно измерить. Словарь измерительных приборов. Электроизмерительные клещи – принципы работы

Клещи токоизмерительные представляют собой прибор, основным назначением которого является измерение электрического ток без разрыва электрической цепи и нарушения ее функционирования.

Дополнительно этот прибор способен измерять также напряжение, частоту, температуру (в некоторых моделях).

В соответствии с измеряемыми величинами делятся на амперметры, вольтметры, ваттметры, фазометры, ампервольтметры.

К самым распространенным относятся клещевые амперметры для измерения переменного тока, получившие название токоизмерительных клещей. С их помощью можно быстро измерить ток в проводнике, не разрывая и не отключая электрическую цепь. Электроизмерительные клещи могут применяться в электроустановках до 10000В.

О назначении многих электрических приборов и инструментов известно любому обывателю – все знают, зачем нужен паяльник или электрическая дрель. Но далеко не у каждого, даже не на каждом предприятии найдутся токоизмерительные клещи.

Несмотря на это, токовые клещи предназначены для широкого использования, просто очень многие не знают о существовании такого прибора и не умеют ним пользоваться.

Где применяются электроизмерительные клещи?

Клещи токоизмерительные могут стать незаменимым помощником как для бытовых потребителей, так и на предприятиях различных масштабов. С их помощью возможно:

  • - определять фактическую нагрузку в сети. Чтобы определить нагрузку однофазной сети, осуществляется замер на вводном кабеле, полученное значение тока в амперах умножается на напряжение в сети и косинус угла между фазами (cos φ). Если отсутствует реактивная нагрузка (мощные индуктивные элементы, дроссели, двигатели), то последнее значение принимается равным единице (cos φ = 1).
  • - для измерения мощности различных приборов. В случае возникновения необходимости измеряется сила тока участка цепи с подключенным потребителем. Мощность определяется по вышеописанной формуле.
  • - для проверки функционирования приборов учета потребления электроэнергии, например, сверки показаний счетчиков с фактическим потреблением.

Конструкция и обозначения

В состав электроизмерительных клещей любой модификации входят следующие основные части: клещи-магнитопровод, переключатель диапазонов и функций, дисплей, выходные разъемы, кнопка фиксации измерений. В данной статье рассматриваются токовые клещи марки mastech M266 .

Переключатель может быть установлен в одно из положений режимов измерений:

  1. - DCV – постоянное напряжение;
  2. - ACV – переменное напряжение;
  3. - DCA – постоянный ток;
  4. - ACA – переменный ток;
  5. - Ω - сопротивление;
  6. - значок диода – проверка диодов;
  7. - значок сигнала – прозвонка с зуммером.

Три входных разъема прибора имеют защиту от перегрузки. При подключении прибора черный провод щупов подсоединяется к разъему «COM», а красный – к разъему «VΩ». Третий разъем, обозначенный как «EXT», применяется для подключения измерителя изоляции.

Порядок измерения тока

Переключатель пределов устанавливается в положение, соответствующее необходимому диапазону измерения переменного тока. Токовые клещи подключаются к измеряемому проводнику.

Если на дисплее наблюдается только значение «1», то необходимо переключатель пределов установить на более высокое значение, так как возникла перегрузка.

Порядок измерения напряжения

Красный провод щупа подсоединить к разъему «VΩ», черный – к «COM». Переключатель пределов установить в положение, соответствующее измеряемому диапазону.

Щупы подсоединить к измеряемой нагрузке или источнику напряжения. На экране прибора будет наблюдаться измеряемое напряжение, а также его полярность. Если на экране наблюдается только значение «1», то переключатель пределов необходимо переключить на более высокое значение, так как возникла перегрузка.

Порядок измерения сопротивления

Щупы прибора так же, как и при измерении напряжения. Переключатель диапазонов установить на диапазон «Ω». Если прибор используется для прозвонки, то переключатель нужно установить в соответствующее положение. Если сопротивление измеряемого участка схемы меньше 50 Ом, то будет звучать сигнал зуммера.

Электроизмерительные клещи – принципы работы

В работу простейших токоизмерительных клещей переменного тока положен принцип одновиткового трансформатора тока.

Его первичная обмотка представляет не что иное, как провод или шину, в которой измеряется ток. Вторичная обмотка, имеющая больше количество витков, намотана на разъемный магнитопровод и находится в самих клещах. К вторичной обмотке подключен амперметр.

Измерив ток, который протекает во вторичной обмотке с учетом известного коэффициента трансформации измерительного трансформатора, можно получить величину тока, измеряемую в проводнике.

Заметим, что с помощью токоизмерительных клещей измерять ток (а по сути - нагрузку) в цепи совсем не сложно и очень удобно. Сам процесс измерения заключается в следующем.

С помощью рукоятки выставляется измеряемая величина. Клещи размыкаются, в них пропускается проводник, рукоятка отпускается и клещи замыкаются. Дальнейший порядок использования электроизмерительных клещей точно такой же, как и при обращении с обычным тестером.

Подсоединять клещи можно как к изолированному, так и неизолированному проводу. Самое главное – охватываться должна только одна шина. На индикаторе прибора отображается величина тока измеряемой цепи.

Таким образом, если охватить проводник и нажать кнопку, то после размыкания магнитокопровода на экране прибора сохранится зафиксированное измеренное показание прибора.

По токоведущей части, которая охвачена магнитопроводом, проходит переменный ток. В магнитопроводе создается переменный магнитный поток, в результате которого во вторичной обмотке возникает электромагнитная индукция – по ней (вторичной обмотке) начинает протекать ток, который измеряется амперметром.

Современные токоизмерительные клещи выполняются по схеме, в которой сочетается трансформатор тока и выпрямительный прибор. Она позволяет выводы вторичной обмотки присоединять к измерительному прибору через набор шунтов, а не напрямую.

Как пользоваться токоизмерительными клещами

Как измерить нагрузку сети в квартире?

Переключатель диапазонов устанавливается в положение АСА 200. Раскрыв токовые клещи, на вводе в квартиру охватить ними изолированный провод, зафиксировать показания, которые появились на экране прибора.

Полученная величина умножается на напряжение сети 220 В, косинус берется равным единице.

Пример. Допустим, прибор показывает 6А. Это значит, что нагрузка сети квартиры составляет:

Р = 6 · 220= 1320 Вт = 1.32 кВт.

По этим данным можно проверить правильность работы счетчика потребляемой электроэнергии, соответствие фактической нагрузке вводного кабеля и др.

Маленькая хитрость при измерениях

Как можно измерить небольшой ток с помощью электроизмерительных клещей?

Для того, чтобы измерить токоизмерительными клещами небольшую силу тока, необходимо провод, на котором нужно узнать ток, намотать несколько раз на разомкнутый магнитопровод. Предел измерений установить на минимальное значение.

Для того, чтобы определить фактическое значение тока, необходимо показания прибора разделить на количество витков провода, намотанного на магнитопровод.

Штангенциркуль является очень популярным измерительным инструментом. Устройство штангенциркуля достаточно несложное, поэтому пользоваться им может практически каждый без особой предварительной подготовки. С его помощью можно измерять как наружные, так и внутренние размеры различных деталей, а также глубины отверстий в них. Несмотря на простую конструкцию, этот инструмент имеет различный класс точности и может давать показания с точностью от 0,1 до 0,01 мм. Свое название он получил, исходя из основной детали конструкции. Благодаря устройству штангенциркуль по праву считается одним из самых универсальных измерительных инструментов.

С помощью штангенциркуля можно измерять как наружные, так и внутренние размеры различных деталей, а также глубины отверстий в них.

Принципиальные конструктивные характеристики штангенциркуля

Штангенинструмент в принципе, и штангенциркуль в данном случае, имеет в качестве основной детали выдвижную штангу с измерительной шкалой. Эта шкала разделена на деления по 1 мм, а ее общая длина у простейшей бытовой модели ШЦ-1 составляет от 15 до 25 см. Существуют и модели больших размеров, но они применяются только на промышленных предприятиях и встречаются намного реже. Именно по этой штанге и определяется максимальная величина, которую может измерить данная конкретная модель штангенциркуля.

Цифровой штангенциркуль ШЦЦ имеет установленный на подвижной рамке цифровой дисплей.

Особой конструктивной чертой его является наличие такого устройства, как нониус. Это вспомогательная шкала, которая подвижна относительно основной линейки. Она помогает правильно определить количество долей деления на этой линейке. Деления на шкале нониуса, еще известного как “верньер”, на определенную долю меньше, чем деления основной линейки. Их может быть 10 для модели, имеющей точность до 0,1 мм, или 20 для моделей с точностью до 0,05 мм. Принцип работы нониуса основан на том, что определить на глаз совпадение делений намного легче, чем относительное расположение одного деления между двумя другими.

При необходимости измерения внешних поверхностей, таких как сечение провода, большие губки просто накладываются с обеих сторон внутренними поверхностями. Провод зажимается между ними, и нулевое деление шкалы подвижной рамки дает показание на основной шкале штанги. Малые же губки имеют форму лезвий ножниц, что помогает измерить диаметр трубы или иного отверстия по шкале без дополнительных вычислений. У них рабочие поверхности внешние, имеющие профиль заостренного лезвия, поэтому ими можно измерить такой показатель, как шаг резьбы.

Составные детали и применение

Инструмент состоит из неподвижной основы и выдвижной арматуры. Они изготовлены из инструментальной стали. В состав штангенциркуля входят следующие составные части:

  1. Основная штанга, на которую крепится вся подвижная арматура. На ней находится основная шкала.
  2. Подвижная рамка, имеющая винтовой фиксатор и прижимаемая внутренней пружинной пластиной. На ней находится шкала нониуса. Она может быть нанесена непосредственно на нее, а может находиться на пластине, закрепленной винтами. Это позволяет регулировать ее относительно шкалы на штанге.
  3. Губки для измерений наружных поверхностей, или большие губки. Одна из них закреплена на неподвижной штанге, а другая – на подвижной рамке. На концах имеются узкие поверхности, что дает дополнительные возможности для измерения.
  4. Губки для измерения внутренних поверхностей, или малые губки. Расположены по тому же принципу напротив предыдущих по центральной оси.
  5. Линейка для измерения глубин. Закреплена к подвижной рамке.

Линейка для измерения глубины закреплена на подвижной рамке и двигается по пазу, сделанному в плоскости штанги. Она может служить также для измерения внутренних канавок и удаленности уступов. Штанга ставится на торец перпендикулярно измеряемому предмету. Линейка выдвигается до тех пор, пока не упирается в дно. Для измерения конических отверстий торец ее имеет небольшое заострение. После получения результата измерений положение инструмента рекомендуется зафиксировать стопорным винтом, а уже потом снимать показания.

Разновидности конструкции штангенциркулей и их маркировка

Наряду с простейшей механической моделью, устройство которой рассмотрено выше, существуют и другие. Их можно разделить на 4 основных вида, имеющих 8 стандартных размеров. Их конструкции, как и назначение, имеют некоторые отличия. Помимо рассмотренного выше двустороннего штангенциркуля ШЦ – 1 существует односторонний вариант ШЦТ- 1. Он имеет губки только с одной стороны и линейку для измерения глубин. Хотя он имеет механическое устройство, как и ШЦ – 1, материалом для его изготовления служит твердая высоколегированная сталь. Такой инструмент помогает определить наружные линейные размеры и глубину отверстий при абразивном воздействии на измеряемый предмет.

Инструмент под названием ШЦ – 2 оснащен двусторонней конструкцией, но губки для измерений внутренних и наружных поверхностей совмещены, и имеют соответственно плоские поверхности внутри и цилиндрические снаружи. Напротив них находятся губки такой же величины для измерения наружных размеров, имеющие заточенные кромки. Это позволяет производить не только измерение, но и разметку на поверхности измеряемой детали. Кроме того, эта модель имеет вспомогательную рамку микрометрической подачи, позволяющую снимать показания с большой точностью.

Штангенциркуль ШЦ – 3 отличается от предыдущей модели только односторонней конструкцией. Его пара губок предназначена для измерения как внутренних, так и наружных размеров. Эта модель предназначена для измерения самых больших размеров, поэтому сама тоже достаточно велика. А чем больше размеры измерительного прибора, тем больше получаемая при измерении погрешность. Поэтому, помимо вышеописанных конструкций, штангенциркули делятся по индикаторам, с помощью которых снимаются показания.

Согласно этому принципу они одразделяются на нониусные, на которых показания вычисляются самостоятельно, исходя из перемещения рамки, на циферблатные и цифровые. В циферблатных, имеющих маркировку ШЦК, используется тот же механический принцип. На рамке расположена цифровая шкала, связанная со штангой зубчатой передачей. Целые миллиметры считываются по положению края рамки, а их доли уже по циферблату. Такой штангенциркуль имеет более высокий класс точности, чем нониусный, и может составлять до 0,01 мм. Однако он очень уязвим для механических повреждений и загрязнения зубчатой рейки от измеряемых деталей.

С использованием штангенциркуля неразрывно связаны токарное производство, установка различных трубопроводных систем, винтовых соединений и прочих конструкций, требующих повышенной точности.

В то же время, благодаря конструкции, пользоваться им может практически каждый. Цифровой штангенциркуль ШЦЦ имеет установленный на подвижной рамке цифровой дисплей. В рамку вмонтировано считывающее устройство, показывающее расстояние между измерительными губками. На дисплее имеются кнопки, позволяющие им управлять. Точность такого прибора составляет 0,01 мм и позволяет делать измерения самых мелких деталей, в частности контролировать резьбу. Однако все недостатки электронных приборов присущи и этому инструменту. Изменения параметров штанги под воздействием температурных перепадов немедленно влияют на показания дисплея.

3. Фронтальный опрос

– Ребята, с какими понятиями мы познакомились на прошлом уроке?
– Дома нужно было начертить в тетради таблицу, в которой необходимо распределить по колонкам (физическое тело, вещество, явление) следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

Заполнение таблицы проверяется устно.

А тем временем один ученик оформляют на доске решение задания по переводу единиц измерения.
После дети сами оценивают правильность выполненного задания.
Самых активных учеников, которые комментировали и отвечали уверенно, правильно и аргументировано, необходимо оценить.
– Третье задание было творческое: подобрать загадки о физических телах, явлениях, веществах.
– Поиграем в игру «Цепочка». Условие игры заключается в следующем: я загадаю вам загадку, а вы не только должны отгадать ее, но и определить: тело, вещество или явление. Кто отгадает, тот зачитывает свою. Кто отгадает загадку одноклассника, тот предлагает свою и т. д. по цепочке. И последнее условие: загадки не повторяются.

Загадка:

Чудо – птица, алый хвост
Полетела в стаю звезд.

– Молодцы!
Оценивание результатов выполнения домашнего задания.
Выставляются отметки в журнал.
Приветствуется оформление творческого задания в виде ребусов, кроссвордов, рисунков.

4. Изучение нового материала

– Ребята, как вы думаете, сколько нам понадобилось времени для проверки домашнего задания?
– А приходилось ли вам в повседневной жизни еще делать измерения? Какие?
– Все эти перечисленные примеры – физические величины. Сегодня на уроке мы подробней познакомимся с ними и научимся их измерять.(Слайд 1 ).
– Запишите в тетради дату и тему урока: «Измерение – основа техники».
– Какие измерительные приборы вам знакомы? Какие величины с их помощью можно измерить? (Слайд 2 )

– Вы, много знаете физических приборов!
– А умеете ли, вы, с их помощью определять величины?
– Проверим?
– Я разделю вас на группы по 5 человек. И каждая группа экспериментально проверит и подтвердит свои знания.
Класс делю на 5 групп с равным количеством детей, но различными навыками и способностями. Т. к. группы разноуровневые, следовательно, нужно подобрать дифференцированные задания: низкий, средний, высокий уровень. (Приложение 3 )
При выполнении эксперимента напоминаю об основных правилах соблюдения техники безопасности: работа с термометрами, с мелкими предметами и с острыми предметами.
Выступающий учащийся (из каждой группы) оценивается, также учитывается правильность выполнения домашнего задания.
– Молодцы!
– Вы все сейчас доказали, что умеете пользоваться измерительными приборами.
– Скажите, для чего нам нужно знать длину и ширину ладони?
– Зачем нам знать, как определять массу тела?

– Где и когда вы еще измеряли температуру?

– Когда еще мы можем измерить объем тела, с помощью линейки?

– Ребята, подумаете, как можно определить объем воздуха в классной комнате?

– Запишем эту формулу в тетрадь.
– А как определить объем кусочка мела? (Показываю мелок).
– Но нас окружают не только тела с правильной геометрической формой. Например, фарфоровый ролик, игрушка «Kinder-surprise», ложка и т. д.
Все предметы демонстрируются.

– Как определить объем тела неправильной формы? Например, игрушки «Kinder-surprise»?

– Объем маленькой игрушки, измеряем физическим прибором – мензуркой.
– Запишите в тетрадь название этого прибора.
– Как измерять объем тела мензуркой? Для этого в мензурку наливают определенное количество воды. Погружают полностью исследуемое тело в мензурку с водой и замечают, что уровень воды увеличился. Разница показаний объемов воды и будет искомая величина – объем тела.
– Запишите формулу в тетрадь:
V = V 1 – V 2 , где V 1 – объем воды в мензурке, а V 2 – объем воды и погруженного в нее тела.
– Кто определит объем медного цилиндра с помощью мензурки?
Нужно учесть следующее: этот эксперимент виден только близ сидящей аудитории. Поэтому демонстрируется слайд 3 (результат проведенного эксперимента).
– Ребята, что общего у всех измерительных приборов? (Слайд 2. Гиперссылка ).
Далее переходим по гиперссылке на слайд 4. Шкала и ее характеристики.
– Рассмотрим один и тот же по назначению прибор, но с разными шкалами. На стр. 9 учебника рис. 11 и 12.
– Ребята, скажите, одинаковы ли показания термометров.
– А какой термометр показывает большую температуру?
– Для того чтобы точно уметь снимать показания с прибора нужно знать его цену деления.
– Запишите в тетради подзаголовок «Цена деления».
– Цена деления – это наименьшее значение физической величины, которое может измерить прибор.
– Для того чтобы правильно определить цену деления существует правило. (Слайд 5 ) Это же правило находим в учебнике.
Учимся определять цену деления шкалы мензурки. (Слайд 6).
– Запишите формулу для определения цены деления:
С = (a – b) / d. (Слайд 7 ).
Учимся определять цену деления шкалы и измерять показания приборов. (Слайды 8, 9 ).

5. Закрепление изученного материала

– Молодцы!
– Ребята, что нового вы сегодня узнали на уроке?

Оценивание тех детей, кто был активным на уроке, с учетом работы в группе.

6. Домашнее задание

– Запишем домашнее задание в дневниках. (Слайд 10 ).
Раздаю карточки с заданиями двух вариантов. (Приложение 4 )
Отвечаю на вопросы детей, если они возникли при знакомстве с заданиями.
На следующем уроке учащиеся проверяют эту работу друг у друга и выставляют оценку на полях карандашом.
– В оставшееся время мы поиграем в «Пойми меня». (Слайд 11 )
– Условие игры: я задаю наводящие утверждения, а ваша задача – догадаться, о чем идет речь как можно раньше. Если ответ верный, то на экране появится отгадка.
– Какую физическую величину с их помощью можно измерить?
– Где еще применяется этот прибор?

– Вторая загадка. (Слайд 12 ).
– Где и для чего применяется этот прибор?

– Третья загадка: (Слайд 13 ).
– Встречали ли вы этот прибор и где?

Самого смекалистого также необходимо оценить.

– Молодцы, всех благодарю за внимание. Всем большое спасибо. (Слайд 14 ).

Любой рабочий процесс, который связан со стройкой, невозможно выполнить без использования измерительных инструментов. С их помощью выполняются самые разные виды строительных работ. Особенно, когда эти работы отделочные. Также измерительные инструменты применяют в процессе ремонта.

Ввиду того, что измерительные инструменты пользуются такой популярностью, а значит, и спросом, стоит более детально поговорить о том, что они собой представляют.

О видах

Видов измерительных инструментов существует множество. Однако рассматривать их все мы не будем. Мы поговорим лишь о тех, которые пользуются популярностью в данное время. К таковым относят следующие инструменты и приборы:

  1. Электровлагомер.
  2. Адгезиметр.
  3. Микротвердомеры.
  4. Прибор Гарднера.
  5. Рефлектоскоп.
  6. Цифровой уклономер.
  7. Цифровая рулетка.
  8. Ультразвуковой дальномер.
  9. Цифровой прибор для обнаружения металлов.

Рассмотрим каждый из этих приборов более детально, чтобы лучше понимать для чего именно они используются.


Электровлагомер

Как не сложно догадаться из названия, эти аппараты предназначены для того, чтобы определять уровень влажности древесного материала. Работают они по принципу определения изменения электропроводности материала вслед за тем, как будет меняться уровень ее влажности. Для приведения измерений нужно воткнуть иглы устройства в древесную поверхность на некотором расстоянии друг от друга.

После этого на шкале прибора указывается уровень влаги, которая присутствует в древесине. Естественно, измерение проводится в процентном соотношении. За счет этих показаний качество паркетных и столярных работ существенно улучшается. Ведь влажная древесина при высыхании коробится, и в древесном покрытии образуются щели.

Адгезиметр

С его помощью можно с максимальной точностью определить уровень адгезии. Другими словами с помощью данного устройства можно определить прочность сцепления лакокрасочного материала с поверхностью, на которую он будет наноситься в последующем. Адгезия может зависеть от самых разных факторов:

  • толщина покрытия;
  • сила внутреннего сцепления покрытия и материала;
  • качества и свойства наносимого покрытия.

Нужно понимать, что у разных материалов, которые предназначены для отделки, разный уровень адгезии. И именно по этой причине использование лакокрасочных материалов, особенно, если они дорогие, требует проведения соответствующих измерений. Ведь ассортимент подобных материалов настолько широк, что качество их часто вызывает сомнение.


Микротвердомер

Применяются для определения твердости лакокрасочного покрытия. Делается это методом определения сопротивления анализируемого покрытия по отношению к твердому телу, которое в него проникает. Единица измерения – Мпа. Стоит отметить, что твердость лакокрасочного покрытия напрямую зависит от свойств самого материала.

Естественно, что подобные измерения проводятся на древесине. Иногда для этого применяют специально заготовленные образцы древесного материала.

Прибор Гарднера

Такое устройство предназначено для тех случаев, когда возникает необходимость определения стойкости лакокрасочного материала к истиранию. Внешне он напоминает метровую стеклянную трубку с внутренним диаметром в 30 миллиметров. Для проведения измерения под ней располагают образец для испытания или проверки под углом в сорок пять градусов.

После этого в трубку струей засыпается кварцевый песок из воронки, которая имеет диаметр в пять миллиметров. Уровень стойкости определяется по тому, сколько песка потребовалось для того, чтобы истерлась верхняя пленка покрытия.


Рефлектоскоп

Предназначен для того, чтобы определять степень блеска лакокрасочного покрытия. За счет этого можно с максимальной точностью определить его качество, которое, в свою очередь, обуславливается четкостью контуров светящегося тела, расположенного на таком покрытии.

Стоит отметить, что любое лакокрасочное покрытие в той или иной степени блестит, то есть отражает световые лучи. Данный фактор напрямую связан с оптикой и со структурой, которую имеет поверхность. Чем более гладким будет покрытие, тем более правильно и направленно будут отражаться световые лучи. Другими словами, оно сильнее блестит.

Цифровой уклономер

Используя такой прибор, можно с максимальной точностью определить угол наклона любой поверхности. Естественно, уклономер применяют для того, чтобы определить угол наклона перекрытия, пола или различных коммуникаций. Подобные устройства удобны и достаточно просты в использовании. Для того чтобы ими пользоваться, не нужны какие-либо специальные навыки.

Цифровая рулетка

Здесь все предельно ясно. Данный прибор представляет собой современный аналог самой обычной рулетки. Цифровое устройство позволяет с предельно допустимой точностью определить длины и ширину строения, поверхности и так далее.


Ультразвуковой дальномер

Тоже современный аналог рулетки. С его помощью также можно измерить расстояние. Кроме того, этот прибор подходит и для вычисления объема и площади. Это стало возможно за счет того, что в прибор встроено вычислительное устройство, которое также имеет функцию памяти и умеет суммировать полученные результаты.

Цифровой прибор для обнаружения металлов

Из названия можно догадаться, что прибор этот применяется для того, чтобы определять наличие цветных и черных металлов. Но кроме этого с помощью данного устройства можно определить, где располагается электрическая проводка.

Видео. Как выбрать рулетку. Опыт строителя


Что означает измерить физическую величину? Что называют единицей физической величины? Здесь вы найдете ответы на эти очень важные вопросы.

1. Узнаем, что называется физической величиной

Издавна люди для более точного описания каких-нибудь событий, явлений, свойств тел и веществ используют их характеристики. Например, сравнивая тела, которые нас окружают, мы говорим, что книга меньше, чем книжный шкаф, а конь больше кошки. Это означает, что объем коня боль­ше объема кошки, а объем книги меньше объема шкафа.

Объем - пример физической величины, которая характеризует общее свойство тел занимать ту или иную часть пространства (рис. 1.15, а). При этом числовое значение объема каждого из тел индивидуально.

Рис. 1.15 Для характеристики свойства тел занимать ту или иную часть пространства мы используем физическую величину объем (о, б), для характеристики движения - скорость (б, в)

Общая характеристика многих материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной .

Еще одним примером физической величины может служить известное вам понятие «скорость». Все движущиеся тела изменяют свое положение в про­странстве с течением времени, однако быстрота этого изменения для каждого тела различна (рис. 1.15, б, в). Так, самолет за I с полета успевает изменить свое положение в пространстве на 250 м, автомобиль - на 25 м, человек - на I м, а черепаха - всего на несколько сантиметров. Поэтому физики и говорят, что ско­рость - это физическая величина, которая характеризует быстроту движения.

Нетрудно догадаться, что объем и скорость,- это далеко не все физичес­кие величины, которыми оперирует физика. Масса, плотность, сила, темпе­ратура, давление, напряжение, освещенность - это лишь малая часть тех физических величин, с которыми вы познакомитесь, изучая физику .


2. Выясняем, что означает измерить физическую величину

Для того чтобы количественно описать свойства какого-либо матери­ального объекта или физического явления, необходимо установить значение физической величины, которая характеризует данный объект или явление.

Значение физических величин получают путем измерений (рис. 1.16- 1.19) или вычислений.


Рис. 1.16. «До отправления поезда осталось 5 минут»,- с волнением измеряете вы время

Рис. 1.17 «Я купила килограмм яблок»,- рассказывает мама о своих измерениях массы


Рис. 1.18. «Одевайся теплее, сегодня на улице прохладнее»,- заботится о вас бабушка после измерения температуры воздуха на улице

Рис. 1.19. «У меня снова поднялось давление»,- жалуется женщина после измерения кровяного давления

Измерить физическую величину - значит сравнить ее с однородной величиной, приня­той за единицу.

Рис. 1.20 Если бабушка и внук будут измерять расстояние в ша­гах, то они всегда будут получать разные результаты

Приведем пример из художественной лите­ратуры: «Пройдя шагов триста по берегу реки, маленький отряд вступил под своды дремучего леса, извилистыми тропами которого им надо было странствовать на протяжении десяти дней». (Ж. Верн «Пятнадцатилетний капитан»)


Рис. 1.21.

Герои романа Ж. Верна измеряли пройден­ный путь, сравнивая его с шагом, то есть еди­ницей измерения служил шаг. Таких шагов оказалось триста. В результате измерения было получено числовое значение (триста) физиче­ской величины (пути) в избранных единицах (шагах).

Очевидно, что выбор такой единицы не поз­воляет сравнивать результаты измерений, полу­ченные разными людьми, поскольку длина шага у всех разная (рис. 1.20). Поэтому ради удобства и точности люди давным-давно начали договари­ваться о том, чтобы измерять одну и ту же фи­зическую величину одинаковыми единицами. Ныне в большинстве стран мира действует при­нятая в 1960 году Международная система еди­ниц измерения, которая носит название «Систе­ма Интернациональная» (СИ) (рис. 1.21).

В этой системе единицей длины является метр (м), времени - секунда (с); объем изме­ряется в метрах кубических (м 3), а скорость - в метрах в секунду (м/с). Об остальных единицах СИ вы узнаете позже.

3. Вспоминаем кратные и дольные единицы

Из курса математики вы знаете, что для сокращения записи больших и малых значе­ний разных величин пользуются кратными и дольными единицами.

Кратные единицы - это единицы, кото­рые больше основных единиц в 10, 100, 1000 и более раз. Дольные единицы - это единицы, которые меньше основных в 10, 100, 1000 и более раз.

Для записи кратных и дольных единиц используют приставки. Например, единицы длины , кратные одному метру,- это километр (1000 м), декаметр (10 м).

Единицы длины, дольные одному метру,- это дециметр (0,1 м), сантиметр (0,01 м), микрометр (0,000001 м) и так далее.

В таблице приведены наиболее часто употребляемые приставки.

4. Знакомимся с измерительными приборами

Измерение физических величин ученые проводят с помощью измери­тельных приборов. Простейшие из них - линейка, рулетка - служат для измерения расстояния и линейных размеров тела. Вам также хорошо известны такие измерительные приборы, как часы - прибор для измерения време­ни, транспортир - прибор для измерения углов на плоскости , термометр - прибор для измерения температуры и некоторые другие (рис. 1.22, с. 20). Co многими измерительными приборами вам еще предстоит познакомиться.

Большинство измерительных приборов имеют шкалу, которая обеспечи­вает возможность измерения. Кроме шкалы, на приборе указывают едини­цы, в которых выражается измеренная данным прибором величина*.

По шкале можно установить две наиболее важные характеристики при­бора: пределы измерения и цену деления.

Пределы измерения - это наибольшее и наименьшее значения физической величины , которые можно измерить данным прибором.

В наши дни широко используются электронные измерительные приборы, в которых значение измеренных величин высвечивается на экране в виде цифр. Пределы измере­ния и единицы определяются по паспорту прибора или устанавливаются специальным переключателем на панели прибора.



Рис. 1.22. Измерительные приборы

Цена деления - это значение наименьшего деления шкалы измерительного прибора.

Например, верхний предел измерений ме­дицинского термометра (рис. 1.23) равен 42 °С, нижний - 34 °С, а цена деления шкалы этого термометра составляет 0,1 °С.

Напоминаем: чтобы определить цену де­ления шкалы любого прибора, необходимо разность двух любых значений величин, ука­занных на шкале , разделить на количество де­лений между ними.


Рис. 1.23. Медицинский термометр

  • Подводим итоги

Общая характеристика материальных объектов или явлений, которая может приоб­ретать индивидуальное значение для каждого из них, называется физической величиной.

Измерить физическую величину - значит сравнить ее с однородной величиной, принятой за единицу.

В результате измерений мы получаем зна­чение физических величин.

Говоря о значении физической величины, следует указать ее числовое значение и единицу.

Для измерения физических величин поль­зуются измерительными приборами.

Для сокращения записи числовых значений больших и малых физиче­ских величин используют кратные и дольные единицы. Они образуются с помощью приставок.

  • Контрольные вопросы

1. Дайте определение физической величины. Как вы его понимаете?
2. Что означает измерить физическую величину?

3. Что понимают под значением физической величины?

4. Назовите все физичес­кие величины, упомянутые в отрывке из романа Ж. Верна, приве­денном в тексте параграфа. Каково их числовое значение? единицы измерения?

5. С помощью каких приставок образуются дольные еди­ницы? кратные единицы?

6. Какие характеристики прибора можно установить с помощью шкалы?

7. Что называют ценой деления?

  • Упражнения

1. Назовите известные вам физические величины. Укажите единицы этих величин. Какими приборами их измеряют?

2. На рис. 1.22 изображены некоторые измерительные приборы. Мож­но ли, используя только рисунок, определить цену деления шкал этих приборов. Ответ обоснуйте.

3. Выразите в метрах следующие значения физической величины: 145 мм; 1,5 км; 2 км 32 м.

4. Запишите с помощью кратных или дольных единиц следующие значения физических величин: 0,0000075 м - диаметр красных кровяных телец; 5 900 000 000 000 м - радиус орбиты планеты Плутон; 6 400 000 м - радиус планеты Земля.

5 Определите пределы измерения и цену деления шкал приборов, ко­торые есть у вас дома.

6. Вспомните определение физической величины и докажите, что длина - это физическая величина.

  • Физика и техника в Украине

Один из выдающихся физиков современности - Лев Давидо­вич Ландау (1908- 1968) - продемонстрировал свои способности, еще учась в средней школе. После окончания университета он стажировался у одного из творцов квантовой физики Нильса Бора. Уже в 25-летнем возрасте он возглавил теоретический отдел Украинско­го физико-технического института и кафедру теоретической физики Харьковского университета. Как и большинство выдающихся физиков-теоретиков, Ландау обладал чрезвычайной широтой научных интересов. Ядерная физика, физика плазмы, теория сверхтекучести жидкого гелия, теория сверхпроводимости - во все эти разделы фи­зики Ландау внес значительный вклад. За работы по физике низких температур он был удостоен Нобелевской премии.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Похожие публикации