Интернет-журнал дачника. Сад и огород своими руками

Эцн насос для нефтяной промышленность. Установки погружных электроцентробежных насосов (уэцн). Насосные обратный и спускной клапаны

Скважинные центробежные насосы являются многоступен-чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко-лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко-лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози-онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко-сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001%. По требова-ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3 - гладкие шайбы; 4,5 - шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру-жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор-тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек-ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо-са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку — только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи-мости от числа ступеней, которые надо в них разместить.


Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат-ного и спускного клапанов.

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа-ратором) уплотняют резиновыми кольцами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляют с помощью шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одина-ковые длины корпусов 3,4 и 5 м, унифицированы. Для защиты кабеля от повреждений при спускоподъемных операциях на основаниях модуля-секции и модуля-головки расположены съемные стальные ребра. Конструкция насоса позволяет без дополнительной разборки использовать модуль насосный газосепаратор, который устанавливается между модулем вход-ным и модулем-секцией.

Технические характеристики некоторых типоразмеров ЭЦН для добычи нефти, изготавливаемых российскими фир-мами по техническим условиям представлены в таблице 6.1 и рис. 6.6.

Напорная характеристика ЭЦН, как видно на при-веденных выше рисунках, может быть как с западающей левой ветвью характеристики (малодебитные насосы), моно-тонно падающей (в основном для среднедебитных устано-вок), так и с переменным знаком производной. Такой характери-стикой в основном обладают высоко дебитные насосы.

Мощностные характеристики практически всех ЭЦН имеют минимум при нулевой подаче (так называемый «режим закрытой задвижки»), что обуславливает применение обратного клапана в колонне НКТ над насосом.

Рабочая часть характеристики ЭЦН, рекомендуемая фирмами-изготовителями, очень часто не совпадает с рабочей частью характеристик, определяемой общими методиками насосостроения. В последнем случае границами рабочей части характеристики являются величины подач в (0,7-0,75)Q o и (1,25-1,3Q 0 , где Q 0 - подача насоса в оптимальном режиме работы, т.е. при максимальном значении КПД.

Погружные электродвигатели

Погружной электрический двигатель (ПЭД) — двигатель специальной конструкции и представляет собой асинхронный двухполюсный двигатель переменного тока с короткозамкнутым ротором. Двигатель заполнен маловязким маслом, которое выполняет функцию смазки подшипников ротора, отвода тепла к стенкам корпуса двигателя, омываемого потоком скважинной продукции.

Верхний конец вала электродвигателя подвешен на пяте скольжения. Ротор двигателя секционный; секции собраны на валу двигателя, изготовлены из пластин трансформаторного же-леза и имеют пазы, в которые вставлены алюминиевые стержни, закороченные с обеих сторон секции токопроводящими коль-цами. Между секциями вал опирается на подшипники. По всей длине вал электродвигателя имеет отверстие для циркуляции масла внутри двигателя, осуществляемой также через паз ста-тора. В нижней части двигателя имеется масляный фильтр.

Длина и диаметр двигателя определяют его мощность. Ско-рость вращения вала ПЭД зависит от частоты тока; при частоте переменного тока 50 Гц синхронная скорость составляет 3000 об/мин. Погружные электродвигатели маркируются с указани-ем мощности (в кВт) и наружного диаметра корпуса (мм), на-пример, ПЭД 65-117 — погружной электродвигатель мощностью 65 кВт и наружным диаметром 117 мм. Необходимая мощность электродвигателя зависит от подачи и напора погружного цен-тробежного насоса и может достигать сотен кВт.

Современные погружные электродвигатели комплектуются системами датчиков давления, температуры и других параме-тров, фиксируемых на глубине спуска агрегата, с передачей сигналов по электрическому кабелю на поверхность (станцию управления).

Двигатели мощностью более 180 кВт диаметром 123 мм, более 90 кВт диаметром 117 мм, 63 кВт диаметром 103 мм и мощностью 45 кВт диаметром 96 мм - секционные.

Секционные двигатели состоят из верхней и нижней секций, которые соединяются при монтаже двигателя на скважине. Каждая секция состоит из статора и ротора, устройство которых аналогично односекционному электродвигателю. Электриче-ское соединение секций между собой последовательное, вну-треннее и осуществляется с помощью 3-х наконечников. Герметизация соединения обеспечивается уплотнением при стыковке секций.

Для увеличения подачи и напора рабочей ступени цен-тробежного насоса применяют регуляторы частоты враще-ния. Регуляторы частоты вращения позволяют перекачивать среду в более широком диапазоне объемов, чем это возможно при постоянной скорости, а также осуществлять плавный контролируемый пуск погружного асинхронного двигателя с ограничением пусковых токов на заданном уровне. Это по-вышает надежность УЭЦН за счет снижения электрических нагрузок на кабель и обмотку двигателя при запуске установок, а также улучшает условия работы пласта при пуске скважины. Оборудование позволяет также в комплекте с установленной в УЭЦН системой телеметрии поддерживать заданный дина-мический уровень в скважине.

Одним из методов регулирования частоты вращения ротора УЭЦН является регулирование частоты питающего погружной двигатель электротока.

Оборудованием для обеспечения этого метода регулирова-ния оснащены станции управления российского производства СУРС-1 и ИРБИ 840.

Гидрозащита

Для увеличения работоспособности погружного электро-двигателя большое значение имеет надежная работа его гидро-защиты, предохраняющей электродвигатель от попадания в его внутреннюю полость пластовой жидкости и компенсирующей изменение объема масла в двигателе при его нагреве и охлаж-дении, а также при утечке масла через негерметичные элементы конструкции. Пластовая жидкость, попадая в электродвигатель, снижает изоляционные свойства масла, проникает через изоля-цию обмоточных проводов и приводит к короткому замыканию обмотки. Кроме того, ухудшается смазка подшипников вала двигателя.

В настоящее время на промыслах Российской Федерации широко распространена гидрозащита типа Г.

Гидрозащита типа Г состоит из двух основных сборочных единиц: протектора и компенсатора.

Основной объем узла гидрозащиты, формируемый эла-стичным мешком, заполнен жидким маслом. Через обратный клапан наружная поверхность мешка воспринимает давление продукции скважины на глубине спуска погружного агрегата. Та-ким образом, внутри эластичного мешка, заполненного жидким маслом, давление равно давлению погружения. Для создания избыточного давления внутри этого мешка на валу протектора имеется турбинка. Жидкое масло через систему каналов под избыточным давлением поступает во внутреннюю полость электродвигателя, что предотвращает попадание скважинной продукции внутрь электродвигателя.

Компенсатор предназначен для компенсации объема мас-ла внутри двигателя при изменении температурного режима электродвигателя (нагревание и охлаждение) и представляет собой эластичный мешок, заполненный жидким маслом и рас-положенный в корпусе. Корпус компенсатора имеет отверстия, сообщающие наружную поверхность мешка со скважиной. Внутренняя полость мешка связана с электродвигателем, а внешняя— со скважиной.

При охлаждении масла объем его уменьшается, и скважинная жидкость через отверстия в корпусе компенсатора входит в зазор между наружной поверхностью мешка и внутренней стенкой корпуса компенсатора, создавая тем самым условия полного заполнения внутренней полости погружного электродвигателя маслом. При нагревании масла в электродвигателе объем его увеличивается, и масло пере-текает во внутреннюю полость мешка компенсатора; при этом скважинная жидкость из зазора между наружной поверхностью мешка и внутренней поверхностью корпуса выдавливается через отверстия в скважину.

Все корпуса элементов погружного агрегата соединяются между собой фланцами со шпильками. Валы погружного насоса, узла гидрозащиты и погружного электродвигателя соединяются между собой шлицевыми муфтами. Таким образом, погружной агрегат УЭЦН представляет собой комплекс сложных электрических, механических и ги-дравлических устройств высокой надежности, что требует от персонала высокой квалификации.

Обратный и спускной клапаны

Обратный клапан служит для предотвращения обратного вращения (турбинный режим) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения повторного запуска насосного агрегата. Остановки погруж-ного агрегата происходят по многим причинам: отключение электроэнергии при аварии на силовой линии; отключение из-за срабатывания защиты ПЭД; отключение при периодической эксплуатации и т.п. При остановке (обесточивании) погружного агрегата столб жидкости из НКТ начинает стекать через насос в скважину, раскручивая вал насоса (а значит, и вал погруж-ного электродвигателя) в обратном направлении.

Если в этот период возобновляется подача электроэнергии, ПЭД начинает вращаться в прямом направлении, преодолевая огромную силу. Пусковой ток ПЭД в этот момент может превысить допустимые пределы, и, если не сработает защита, электродвигатель выходит из строя. Спускной клапан предназначен для слива жидкости из колонны НКТ при подъеме насосного агрегата из скважины. Обратный клапан ввинчен в модуль-головку насоса, а спускной - в корпус обратного клапана. Допускается устанавливать кла-паны выше насоса в зависимости от значения газосодержания у сетки входного модуля насоса.

При этом клапаны должны располагаться ниже сростки основного кабеля с удлинителем, так как в противном случае поперечный габарит насосного агрегата будет превышать до-пустимый.

Обратные клапана насосов 5 и 5А рассчитаны на любую подачу, группы 6 - на подачу до 800 м 3 /сут включительно. Конструктивно они одинаковы и имеют резьбу муфты и насосно-компрессорной гладкой трубы диаметром 73 мм. Об-ратный клапан для насосов группы 6, рассчитанный на подачу свыше 800 м 3 /сут, имеет резьбу муфты и НКТ гладкой трубы диаметром 89 мм.

Спускные клапана имеют такие же исполнения по резьбам, как и обратные. В принципе спускной клапан - это муфта, в боковую стенку которой вставлена горизонтально короткая бронзовая трубка (штуцер), запаянная с внутреннего конца. От-верстие в этом клапане вскрывают при помощи металлического стержня диаметром 35 мм и длиной 650 мм, сбрасываемого в трубу с поверхности. Стержень, ударяясь о штуцер, отламы-вает его в месте надреза и открывает отверстие в клапане.

В результате жидкость перетекает в эксплуатационную колонну. Применение такого спускного клапана не рекомендуется, если в установке используют скребок для очистки труб от парафина. При обрыве проволоки, на которой спускается скребок, он па-дает и ломает штуцер, происходит самопроизвольный перепуск жидкости в скважину, что приводит к необходимости подъема агрегата. Поэтому применяют спускные клапаны и других типов, приводимые в действие за счет повышения давления в трубах, без спуска металлического стержня.

Трансформаторы

Трансформаторы предназначены для питания установок погружных центробежных насосов от сети переменного тока напряжением 380 или 6000 В частотой 50 Гц. Трансформатор повышает напряжение, чтобы двигатель на вводе в обмотку имел заданное номинальное напряжение. Рабочее напряжение двигателей составляет 470-2300 В. Кроме того, учитывается снижение напряжения в длинном кабеле (от 25 до 125 В/км).

Трансформатор состоит из магнитопровода, обмоток вы-сокого напряжения (ВН) и низкого напряжения (НН), бака, крышки с вводами и расширителя с воздухоосушителем, пере-ключателя. Трасформаторы выполняются с естественным мас-ляным охлаждением. Они предназначены для установки на от-крытом воздухе. На высокой стороне обмоток трансформатора имеется 5-10 ответвлений, обеспечивающих подачу оптималь-ного напряжения на электродвигатель. Масло, заполняющее трансформатор, имеет пробивное напряжение 40 кВ.

Станция управления

Станция управления предназначена для управления рабо-той и защиты У ЭЦН и может работать в ручном и автоматиче-ском режимах. Станция оснащена необходимыми контрольно-измерительными системами, автоматами, всевозможными реле (максимальные, минимальные, промежуточные реле времени и т.п.). При возникновении нештатных ситуаций срабатывают соответствующие системы защиты, и установка отключается.

Станция управления выполнена в металлическом ящике, может устанавливаться на открытом воздухе, но часто разме-щается в специальной будке.

Кабельные линии

Кабельные линии предназначены для подачи электроэнер-гии с поверхности земли (от комплектных устройств и станций управления) к погружному электродвигателю.

К ним предъявляются достаточно жесткие требования — малые электрические потери, малые диаметральные габариты, хорошие диэлектрические свойства изоляции, термостойкость к низким и высоким температурам, хорошая сопротивляемость воздействию пластовой жидкости и газа и т.д.

Кабельная линия состоит из основного питающего кабеля (круглого или плоского) и соединенного с ним плоского кабеля-удлинителя с муфтой кабельного ввода.

Соединение основного кабеля с кабелем-удлинителем обе-спечивается неразъемной соединительной муфтой (сросткой). С помощью сростки могут быть соединены также участки основного кабеля для получения требуемой длины.

Кабельная линия на основной длине чаще всего имеет се-чение круглое или близкое к треугольному.

Для сокращения диаметра погружного агрегата (кабель+центробежный насос) нижняя часть кабеля имеет плоское сечение.

Кабель выпускается с полимерной изоляцией, которая на-кладывается на жилы кабеля в два слоя. Три изолированные жилы кабеля соединяются вместе, накрываются предохраняю-щей подложкой под броню и металлической броней. Металличе-ская лента брони предохраняет изоляцию жил от механических повреждений при хранении и работе, в первую очередь — при спуске и подъеме оборудования.

В прошлом бронированный кабель выпускался с резиновой изоляцией и защитным резиновым шлангом. Однако в скважине резина насыщалась газом и при подъеме кабеля на поверхность газ разрывал резину и броню кабеля. Применение пластмас-совой изоляции кабеля позволило существенно снизить этот недостаток.

У погружного двигателя кабельная линия заканчивается штепсельной муфтой, которая обеспечивает герметичное соеди-нение с обмоткой статора двигателя.

Верхний конец кабельной линии проходит через специаль-ное устройство в оборудовании устья скважины, которым обе-спечивается герметичность затрубного пространства, и соединя-ется через клеммную коробку с электрической линией станции управления или комплектного устройства. Клеммная коробка предназначена для предупреждения попадания нефтяного газа из полости кабельной линии в трансформаторные подстанции, комплектные устройства и шкафы станций управления.

Кабельная линия в состоянии транспортирования и хра-нения располагается на специальном барабане, используемом также при спусках и подъемах установок на скважинах, про-филактических и ремонтных работах с кабельной линией.

Выбор конструкций кабельных линий зависит от условий эксплуатации установок ЭЦН, в первую очередь, от температу-ры скважинной продукции. Часто кроме пластовой температуры используется расчетная величина снижения этой температуры за счет температурного градиента, а также повышение темпера-туры окружающей среды и самого скважинного агрегата за счет нагрева погружного электродвигателя и центробежного насоса. Повышение температуры может быть довольно значительным и составлять 20-30 °С. Другим критерием выбора конструкции кабеля является температура окружающего воздуха, которая влияет на работоспособность и долговечность изоляционных материалов кабельных линий.

Важными факторами влияющими на выбор конструкции кабеля являются свойства пластового флюида - коррозионная активность, обводненность, газовый фактор.

Для сохранения целостности кабеля и его изоляции при спускоподъемных операциях необходимо кабель фиксировать на колонне. НКТ. При этом необходимо применять фикси-рующие приспособления вблизи участка изменения диаметра колонны, т.е. около муфты или высадки под резьбу. При фик-сации кабеля необходимо следить за тем, чтобы кабель плотно прилегал к трубам, а в случае применения плоского кабеля надо следить за тем, чтобы кабель не был перекручен.

Простейшими приспособлениями для крепления кабелей к насосно-компрессорным трубам (НКТ) и узлам погружного насосного агрегата УЭЦН являются металлические пояса с пряжками или клямсы.

Крепление кабеля-удлинителя к узлам погружного агрегата (погружного насоса, протектора и двигателя) осуществляется в местах, указанных в руководствах по эксплуатации данного вида оборудования; крепление кабеля-удлинителя и основного кабеля к НКТ осуществляется по обе стороны каждой муфты НКТ на расстоянии 200-250 мм от верхнего и нижнего торцов муфты

Эксплуатация установок УЭЦН в наклонно -и криволиней-ных скважинах потребовала создания приспособлений для кре-пления кабелей и защиты их от механических повреждений.

Российским предприятием ЗАО "Ижспецтехнология" (г. Ижевск) разработаны и производятся защитные устройства (ЗУ), состоящие из корпуса и механических замков (рис. 6.9).

Данное устройство устанавливается на муфте НКТ и об-ладает следующими техническими особенностями:

Обеспечивает простую и надежную фиксацию (осевую и радиальную) на НКТ;

Надежно удерживает и защищает кабель, в том числе в аварийных ситуациях;

Не имеет сборно-разборных элементов (винтов, гаек, шплинтов и др.), что исключает их попадание в скважину при монтаже и спуско-подъмных операциях;

Предполагает многократное использование;

Монтаж устройства не требует слесарно-монтажного инструмента.

Среди ведущих фирм мира наибольший опыт в разработке, производстве и эксплуатации защитных устройств для кабелей имеет фирма Lasalle (Шотландия) (рис. 6.10).

Цельнометаллические литые протекторы Lasalle отличают следующие характеристики:

Скорость и простота монтажа;

Пригодность к эксплуатации в высокосернистой скважинной среде;

Отсутствие незакрепленных элементов, могущих упасть в скважину;

Возможность многократного использования.

Фирма Lasalle предлагает протекторы для защиты основно-го кабеля (плоского и круглого) и кабеля-удлинителя на участ-ках колонны НКТ, погружного агрегата установки, обратного и спускного клапанов.

Назначение и технические данные УЭЦН.

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У – установка, 2 –вторая модификация, Э – с приводом от погружного электродвигателя, Ц – центробежный, Н – насос, К – повышенный коррозионостойкости, И – повышенной износостойкости, М – модульного исполнения, 6 – группы насосов, 180, 350 – подача м\сут, 1200, 1100 – напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп – 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм – в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы – 5,5 а, 6. Диаметры корпусов группы 5 – 92 мм, группы 5 а – 103 мм, группы 6 – 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. – подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

В верхней части насоса находится ловильная головка, в которой устанавливается обратный клапан и к которой крепится НКТ.

Электродвигатель погружной, трехфазовый, асинхронный, маслозаполненный с короткозамкнутым ротором в обычном исполнении и коррозионностойком исполнениях ПЭДУ (ТУ 16-652-029-86). Климатическое исполнение – В, категория размещения – 5 по ГОСТ 15150 – 69. В основании электродвигателя предусмотрены клапан для закачки масла и его слива, а также фильтр для очистки масла от механических примесей.

Гидрозащита ПЭД состоит из протектора и компенсатора. Она предназначена для предохранения внутренней полости электродвигателя от попадания пластовой жидкости, а также компенсации температурных изменений объемов масла и его расхода. (см. рисунок 1.3.)

Протектор двухкамерный, с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой.

Кабель трехжильный с полиэтиленовой изоляцией, бронированный. Кабельная линия, т.е. кабель намотанный на барабан, к основанию которого присоединен удлинитель – плоский кабель с муфтой кабельного ввода. Каждая жила кабеля имеет слой изоляции и оболочку, подушки из прорезиненной ткани и брони. Три изолированные жилы плоского кабеля уложены параллельно в ряд, а круглового скручены по винтовой линии. Кабель в сборе имеет унифицированную муфту кабельного ввода К 38, К 46 круглого типа. В металлическом корпусе муфты герметично заделаны с помощью резинового уплотнения, к токопроводящим жилам прикреплены наконечники.

Конструкция установок УЭЦНК, УЭЦНМ с насосом имеющим вал и ступени, выполненные из коррозионностойких материалов, и УЭЦНИ с насосом, имеющим пластмассовые рабочие колеса и резинометаллические подшипники аналогична конструкция установок УЭЦН.

При большом газовом факторе применяют насосные модули – газосепараторы, предназначенные для уменьшения объемного содержания свободного газа на приеме насоса. Газосепараторы соответствуют группе изделий 5, виду 1 (восстанавливаемые) по РД 50-650-87, климатическое исполнение - В, категория размещения – 5 по ГОСТ 15150-69.

Модули могут быть поставлены в двух исполнениях:

Газосепараторы: 1 МНГ 5, 1 МНГ5а, 1МНГ6 – обычного исполнения;

Газосепараторы 1 МНГК5, МНГ5а – повышенной коррозионной стойкости.

Модули насосные устанавливаются между входным модулем и модулем-секцией погружного насоса.

Погружной насос, электродвигатель, и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Комплектующие подъемы и оборудование установок ЭЦН приведены в приложении 2.

Технические характеристика ПЭД

Приводом погружных центробежных насосов служит специальный маслозаполненный погружной ассинхронный электродвигатель трехфазного переменного тока с короткозамкнутым ротором вертикального исполнения типа ПЭД. Электродвигатели имеют диаметры корпусов 103, 117, 123, 130, 138 мм. Поскольку диаметр электродвигателя ограничен, при больших мощностях двигатель имеет большую длину, а в некоторых случаях выполнения секционным. Так как электродвигатель работает погруженным в жидкость и часто под большим гидростатическим давлением, основное условие надежной работы – его герметичность (см. рисунок 1.3).

ПЭД заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим как для охлаждения, так и для смазки деталей.

Погружной электродвигатель состоит из статора, ротора, головки, основания. Корпус статора изготавливается из стальной трубы, на концах которой предусмотрена резьба для подсоединения головки и основания двигателя. Магнитопровод статора собирается из активных и немагнитных шихтованных жестей, имеющих пазы, в которых располагаются обмотка. Обмотка статора может быть однослойной, протяжной, катушечной или двухслойной, стержневой, петлевой. Фазы обмотки соединены.

Активная часть магнитопровода совместно с обмоткой создает в электродвигателей вращающееся магнитное поле, а немагнитная часть служит опорами для промежуточных подшипников ротора. К концам обмотки статора припаивают выводные концы, изготовленные из многожильной медного провода с изоляцией, имеющий высокую электрическую и механическую прочность. К концам припаивают штежельные гильзы, в которые входят наконечники кабеля. Выводные концы обмотки соединяют с кабелем через специальную штежельную колодку (муфту) кабельного ввода. Токоввод двигателя может быть и ножевого типа. Ротор двигателя короткозамкнутый, многосекционный. В его состав входят вал, сердечники (пакеты ротора), радиальные опоры (подшипники скольжения). Вал ротора выполнен из пустотелой калиброванной стали, сердечники из листовой электротехнической стали. Сердечники набираются на вал, чередуясь с радиальными подшипниками, и соединены с валом шпонками. Набор сердечников на валу затянуть в осевом направлении гайками или турбинкой. Турбинка служит для принудительной циркуляции масла для выравнивания температуры двигателя на длине статора. Для обеспечения циркуляции масла на погружной поверхности магнитопровода имеются продольные пазы. Масло циркуляцией через эти пазы, фильтра в нижней части двигателя, где оно очищается, и через отверстие в валу. В головке двигателя расположены пята и подшипник. Переводник в нижней части двигателя служит для размещения фильтра, перепускного клапана и клапана для закачки масла в двигатель. Электродвигатель секционного исполнения состоит из верхней и нижней секций. Каждая секция имеет такие же основные узлы. Технические характеристики ПЭД приведены в приложении 3.

Основные технические данные кабеля

Подвод электроэнергии к электродвигателю установки погружного насоса осуществляется через кабельную линию, состоящую из питающего кабеля и муфты кабельного ввода для сочленения с электродвигателем.

В зависимости от назначения в кабельную линию могут входить:

Кабель марок КПБК или КППБПС – в качестве основного кабеля.

Кабель марки КПБП (плоский)

Муфта кабельного ввода круглая или плоская.

Кабель КПБК состоит из медных однопроволочных или многопроволочных жил, изолированных в два слоя полиэтиленом высокой прочности и скрученных между собой, а также подушки и брони.

Кабели марок КПБП и КППБПС в общей шланговой оболочке состоят из медных однопроволочных и многопроволочных жил, изолированных полиэтиленом высокой плотности и уложенных в одной плоскости, а так же из общей шланговой оболочке, подушки и брони.

Кабели марки КППБПС с отдельно отшлангованными жилами состоят из медных одно-,многопроволочных жил, изолированных в два слоя полиэтилена высокого давления и уложенных в одной плоскости.

Кабель марки КПБК имеет:

Рабочее напряжение В – 3300

Кабель марки КПБП имеет:

Рабочее напряжение, В - 2500

Допустимое давление пластовой жидкости, МПа – 19,6

Допустимый газовый фактор, м/т – 180

Кабель марки КПБК и КПБП имеет допустимые температуры окружающей среды от 60 до 45 С воздуха, 90 С – пластовой жидкости.

Температуры кабельных линий приведены в приложении 4.

1.2.Краткий обзор отечественных схем и установок.

Установки погружных центробежных насосов предназначены для откачивания нефтяных скважин, в том числе наклонных, пластовой жидкости, содержащей нефть и газ, и механической примеси.

Установки выпускаются двух видов – модульные и немодульные; трех исполнений: обычное, коррозионостойкое и повышенной износостойкости. Перекачиваемая среда отечественных насосов должна иметь следующие показатели:

· пластовая дикость – смесь нефти, попутной воды и нефтяного газа;

· максимальная кинематическая вязкость пластовой жидкости 1 мм\с;

· водородный показатель попутной воды рН 6,0-8.3;

· максимальное содержание полученной воды 99%;

· свободного газа на приеме до 25%, для установок с модулями – сепараторами до 55%;

· максимальная температура добываемой продукции до 90С.

В зависимости от поперечных размеров применяемых в комплекте установок погружных центробежных электронасосов, элетродвигателей и кабельных линий установки условно делятся на 2 группы 5 и 5 а. С диаметрами обсадных колонн 121.7 мм; 130 мм; 144,3 мм соответственно.

Установка УЭЦ состоит из погружного насосного агрегата, кабеля в сборе, наземного электрооборудования – трансформаторной комилентной подстанции. Насосный агрегат состоит из погружного центробежного насоса и двигателя с гидрозащитой, спускается в скважину на колонне НКТ. Насос погружной, трехфазный, асинхронный, маслозаполненный с ротором.

Гидрозащита состоит из протектора и компенсатора. Кабель трехжильный с полиэтиленовой изоляцией, бронированный.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

1.2.2. Погружной центробежный насос.

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие в том, что он многосекционный с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливают из модифицированного серого чугуна, насосов коррозионностойких – чугуна типа «нирезист», износостойких колес – их полиамидных смол.

Насос состоит из секций, число которых зависит от основных параметров насоса – напора, но не более четырех. Длина секции до 5500 метров. У модульных насосов состоит из входного модуля, модуля – секции. Модуль – головки, обратного и спускного клапанов. Соединение модулей между собой и входного модуля с двигателем – фланцевое соединение (кроме входного модуля, двигателем или сепаратором) уплотняются резиновыми манжетами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами. Валы модулей-секций всех групп насосов имеющих одинаковые длины корпусов унифицированы по длине.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего подшипников, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфтой, предназначенной для соединения вала модуля с валом гидрозащиты.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана, с другой стороны – фланец для подсоединения к модулю-секции, двух ребер и резинового кольца.

В верхней части насоса имеется ловильная головка.

Отечественной промышленностью выпускаются насосы с подачей (м/сут):

Модульные – 50,80,125,200.160,250,400,500,320,800,1000.1250.

Немодульные – 40.80,130.160,100,200,250,360,350,500,700,1000.

Следующих напоров (м) - 700, 800, 900, 1000, 1400, 1700, 1800, 950, 1250, 1050, 1600, 1100, 750, 1150, 1450, 1750, 1800, 1700, 1550, 1300.

1.2.3. Погружные электродвигатели

Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

· мехпримесей не более 0.5 г/л;

· свободного газа не более 50%;

· сероводорода для нормальных, не более 0.01 г/л, коррозионностойких до 1,25 г/л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.

1.2.4. Гидрозащита электродвигателя.

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г/см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.

24. Условие фонтанирования скважин, определение энергии и удельного расхода газа при работе газожидкостного подъёмника.

Условия фонтанирования скважин .

Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, тоесть фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа расстворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

Рс = Рг+Ртр+ Ру; где

Рс - давление на забое, РГ, Ртр, Ру - гидростатическое давление столба жидкости в скважине, расчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.

Различают два вида фонтанирования скважин:

· Фонтанирование жидкости, не содержащей пузырьки газа - артезианское фонтанирование.

· Фонтанирование жидкости, содержащей пузырьки газа облегчающего фонтанирование - наиболее распространенный способ фонтанирования.

На более чем 60 процентах нефтедобывающих скважин для производства изначально определенных извлекаемых запасов необходимо применение той или иной технологии механизированной добычи. Из приблизительно 832000 скважин с механизированной добычей в мире, примерно 14 процентах эксплуатировались или эксплуатируются с использованием ЭЦН .

Механизированные способы добычи являются неотъемлемой частью эксплуатации скважин, в особенности на месторождениях поздней стадии разработки, где продуктивные пласты не обладают достаточным давлением для подъема нефти на устье. По мере того как дебиты скважины по газу и нефти продолжают снижаться, а дебит по воде растет, в частности в пластах с водонапорным режимом, нефтедобывающая компания может начать использовать заводнение - метод повышения нефтеотдачи при котором вода закачивается в пласт через водонагнетательную скважину для перемещения углеводородов к другим скважинам.

При этом со временем дебит скважины по нефти продолжит снижаться, а дебит по воде будет расти. В результате, время откачки, к примеру, для станка-качалки растет до того момента, пока насос не станет работать двадцать четыре часа в сутки. В это время, наиболее практичным методом увеличения добычи является установка насоса с большей производительностью.

Одним из приемлемых вариантов, в особенности при операциях заводнения с применением больших объемов, является погружной насос с электроприводом. Системы ЭЦН могут быть наилучшим вариантом для высокодебитных скважин, на которых произошло падение уровня добычи и существует необходимость его повышения. Эта задача актуальна для многих месторождениях в Российской федерации и странах СНГ. Старые системы газлифта в условиях сильного обводнения могут работать при более низких давлениях и обеспечить более полный отбор извлекаемых запасов нефти, если затратить средства на перевод этих скважин на ЭЦНы.

Из всех систем механизированной добычи электрические центробежные насосы (ЭЦН) обеспечивают наибольшую отдачу на наиболее глубоких скважинах, но вместе с тем их применение требует более частых ремонтов и соответствующего увеличения затрат. В добавок, ЭЦН обеспечивают превосходные рабочие характеристики в средах насыщенных газом и водой. Газ и вода присутствуют естественным образом в сырой нефти в больших объемах. Для возможности откачки нефти на устье необходимо отделить от нее газ и воду. Высокое их содержание может вызвать газовые пробки в механизме насоса, что приведет к значительному снижению производительности и потребуется извлечение из скважины всей насосно-компрессорной колонны и повторной ее заправки.

Технология электрических центробежных насосов

На большинстве нефтяных месторождений на стадии эксплуатации для откачки нефти на устье используются скважинные насосы, которые имеют электропривод. Насос как правило включает в себя несколько последовательных секций центробежных насосов, которые могут быть сконфигурированы с учетом специфических параметров ствола скважины для определенного назначения. Электрические центробежные насосы (ЭЦН) являются общепринятым методом механизированной добычи, обеспечивающим широкий диапазон размеров и производительности. Электрические центробежные насосы как правило используются на старых месторождениях с высокой обводненностью (высоким соотношением вода-нефть).

Насосы ЭЦН обеспечивают экономичную добычу путем повышения нефтеотдачи на данных низкопродуктивных старых месторождениях. Заканчивания с оснащением ЭЦН являются альтернативными средствами механизированной эксплуатации скважин, которые имеют низкие давления призабойной зоны. Заканчивания скважины с оснащением ЭЦН являются наиболее эффективным способом эксплуатации высокодебитных скважин. При использовании ЭЦН больших размеров были получены дебиты до 90000 баррелей (14500 м3) жидкости в сутки.

Компоненты ЭЦН

Система ЭЦН состоит из нескольких компонентов, которые вращают последовательно соединенные центробежные насосы для повышения давления скважинной жидкости и подъема ее на устье. Энергия для вращения насоса обеспечивается высоковольтным (от 3 до 5 кВ) источником переменного тока, который приводит в действие специальный двигатель, способный работать при высоких температурах до 300 °F (150 °C) и высоких давлениях до 5000 фунт/дюйм2 (34 MПa) в скважинах глубиной до 12000 футов (3,7 км) с потребляемой мощностью до 1000 лошадиных сил (750 кВт). В ЭЦН применяется центробежный насос, который соединен с электродвигателем и работает при погружении в скважинную жидкость. Герметично изолированный электродвигатель вращает серию рабочих колес. Каждое рабочее колесо в серии подает жидкость через отвод во входное отверстие рабочего колеса расположенного над ним.

В типовом 4 дюймовом ЭЦН, каждое рабочее колесо дает прибавку давления примерно 9 psi (60 KПa). Например, типичный 10-ти секционный насос создает давление около 90 psi (600 KПa) на выходе (т.е 10 колес x 9 psi). Лифт и производительность насоса зависят от диаметра рабочего колеса и ширины лопатки рабочего колеса. Давление насоса является функцией количества рабочих колес. В качестве примера, 7-ми секционный насос с мощностью 1/2 лошадиной силы может откачивать большой объем воды при низком давлении, тогда как 14-ти секционный насос с мощностью 1/2 лошадиной силы откачает меньший объем, но при более высоком давлении. Как во всех центробежных насосах, увеличение глубины скважины или давления на выходе приводит к снижению производительности.

В системах ЭЦН электродвигатель располагается внизу компоновки, а насос сверху. Электрический кабель крепится к наружной поверхности НКТ и компоновка в сборе спускается в скважину таким образом, что насос и электродвигатель находятся ниже уровня жидкости. Система механических уплотнений и выравнивающее/предохранительное уплотнение (равнозначные названия) используются для предотвращения поступления жидкости в электродвигатель и устранения опасности короткого замыкания. Насос может быть подсоединен либо к трубе, к гибкому шлангу, либо спущен по направляющим рельсам или проволоке таким образом, что насос садится на фланцевую муфту с лапой и при этом обеспечивается соединение с компрессорными трубами. При вращении электродвигателя вращение передается на рабочее колесо в батарее последовательных центробежных насосов. Чем больше секций имеет насос, тем выше будет подъем жидкости.

Электродвигатель подбирается с учетом потребностей насоса. Насос проектируется для откачки определенного объема жидкости. Вал может быть изготовлен из монель-металла, а секции из коррозионно- и износостойкого материала. Насос имеет роторно-центробежное действие. Защитный узел крепится сверху насоса для изолирования электродвигателя и для обеспечения движения вала в центре для привода насоса.

Кабель проходит из верхней части электродвигателя, сбоку от насоса/уплотнения, и крепится к внешней поверхности каждой НКТ по всей длине лифтовой колонны от электродвигателя до устья скважины, а затем до электрораспределительной коробки. Кабель состоит из трех жил защищенного и изолированного непрерывного провода. Bвиду ограниченного зазора вокруг насоса/уплотнения, в промежутке от электродвигателя до НКТ выше насоса используется плоский кабель. В этом месте он сращивается с менее дорогим круглым кабелем, который проходит до устья. Кабель может иметь металлическую оболочку для защиты от повреждения.

Проектирование систем ЭЦН требует всестороннего и тщательного анализа с целью одновременного решения ряда специфических задач их применения. Для проектирования требуется информация по притоку скважины (кривая потока (КП) или кривая продуктивности скважины (КПС)), данные о скважинных жидкостях (дебит по нефти, водонефтяной фактор, газожидкостное соотношение), данные по трубам (глубины и размеры НКТ и обсадных труб), температуры (на забое и на устье), и давления на устье скважины. Для надлежащего проектирования и подбора оборудования также требуется информация по твердой фазе, твердым отложениям, асфальтенам, коррозионно-активным жидкостям, коррозионно-активным газам и т.д.

Оборудование устья требует установки силового трансформатора и щита управления, а также электрораспределительной коробки с воздушным охлаждением. Если требуется использование привода с регулируемой скоростью (ПРС), тогда необходим дополнительный повышающий трансформатор в цепи до входа кабеля в устье скважины. Трубная головка имеет конструкцию, позволяющую удерживать колонну НКТ и изолировать электрический кабель. Этот изолятор, как правило, способен выдержать давление как минимум 3000 psi. Щит управления обычно оборудуется амперметром, плавкими предохранителями, молниезащитой и системой отключения. Он имеет и другие устройства, такие как выключатель при высоком и низком токе и аварийную сигнализацию. Он позволяет эксплуатировать скважину непрерывно, с перерывами или полностью остановить эксплуатацию.

Он обеспечивает защиту от пиков напряжения или разбалансирований, которые могут произойти в источнике электропитания. Трансформаторы, как правило, располагаются на краю кустового основания. Входящее электрическое напряжение трансформируется в напряжение, требуемое для работы электродвигателя на предполагаемой нагрузке и для компенсации потерь в кабеле. Повышенное напряжение (пониженный ток) снижает потери на скважинном кабеле, но следует учитывать и другие факторы (Справочное руководство по промысловым насосам, 2006). ЭЦН резко теряют производительность когда в насос попадает значительный процент газа.

Пороговый уровень для начала возникновения проблемы с газом как правило принимается 10% доли газа по объему на входе насоса при давлении на входе насоса. Ввиду того, что насосы имеют высокую - до 4000 об/мин (67 Гц) - скорость вращения и малые зазоры, они не являются стойкими к воздействию твердой фазы, например песка. ЭЦНы для нефтяных скважин выпускаются для обсадных колонн диаметров от 4 1/2 до 9 5/8 дюймов. Выпускаются насосы для обсадных колонн большего диаметра, однако они используются преимущественно в водяных скважинах. Для определенного размера обсадной колонны, как правило, более оптимальным выбором является оборудование с большим диаметром. Оборудование с большим диаметром является более коротким, как электродвигатель, так и насосы являются более эффективными, а электродвигатели легче охлаждаются. Они создают тихое компактное устьевое оборудование.

Преимущества ЭЦН

Вследствие минимальных требований к оборудованию на устье, ЭЦНы могут пользоваться спросом для применений на площадках с ограниченными рабочими площадями, как например на морских установках, если затраты на подъем не являются ограничивающим фактором. Они также используются на промыслах, где нет доступного газа для систем газлифта. ЭЦНы являются одним из наиболее высокообъемных методов механизированной эксплуатации. ЭЦНы имеют преимущество над другими высокообъемными методами, так как они могут создавать более высокую депрессию на пласт и повысить его продуктивность в тех случаях, когда возможно решение проблем с помехой от газа и выноса песка. Диаметр обсадной колонны также не является важным для обеспечения возможности откачки таких больших объемов.

По мере роста объемов заводнения, традиционным становится откачка нескольких тысяч баррелей жидкости в сутки в процессе улучшения эффективности пластового вытеснения. Данная система легко может быть автоматизирована и может проводить откачку периодически или постоянно, но постоянная откачка является предпочтительной для увеличения срока службы. Для неглубоких скважин капитальные затраты являются относительно невысокими.

Недостатки ЭЦН

Существует несколько недостатков ЭЦН. Основной проблемой является ограниченный срок службы. Насос как таковой относится к высокоскоростному центробежному типу, который может быть поврежден абразивными материалами, твердой фазой или обломками. Формирование окалины или минерального осадка может помешать работе электрического центробежного насоса. Экономическая эффективность ЭЦН в большой мере зависит от стоимости электроэнергии. Это является особенно критичным в отдаленных регионах. Система не обладает широкой эксплуатационной гибкостью. Все основные компоненты находятся в призабойной зоне скважины, поэтому, когда возникает проблема или требуется замена какого-либо компонента, приходится извлекать всю систему целиком.

Если присутствует высокий процент газа, принимаются меры для его отделения и возврата назад в обсадную колонну до того как он попадет в насос. Засасывание больших объемов свободного газа может вызвать неустойчивую работу и привести к механическому износу и возможному перегреву. На морских установках, где по правилам требуется применение пакера, весь газ откачивается с жидкостью. В этих особых условиях применяются специальные насосы, в которых возможно создание первичного напора на приеме насоса.

Авторы: Джеймс Ф. Ли, профессор технологии нефти Керр Макги, школа геологии и технологии нефти, университет Оклахомы, Норман, Оклахома;
и Саид Мохтаб, советник по научно-исследовательским проектам по природному газу, департамент химии и технологии нефти, университет Вайоминга, Ларами, Вайоминг.

Давно мечтал написать на бумаге (напечатать на компьютере) все, что знаю про УЭЦНы.
Попытаюсь простым и понятным языком рассказать про Установку Электро-Центробежного-Насоса - основной инструмент, которым добывается 80% всей нефти в России.

Каким то образом получилось так, что всю свою сознательную жизнь я с ними связан. С пяти лет начал ездить с отцом по скважинам. В десять мог сам отремонтировать любую станцию, в двадцать четыре стал инженером на предприятии, где их ремонтировали, в тридцать - заместителем генерального директора, там, где их делают. Знаний по предмету навалом - поделится не жалко, тем более что много-много людей меня постоянно спрашивают о том или ином, касающемся моих насосов. В общем и целом, что бы много раз не повторять одно и тоже разными словами - напишу один раз, а потом буду экзамены принимать;). Да! Будут слайды… без слайдов никак.


Что это такое.
УЭЦН - установка электроцентробежного насоса, она же бесштанговый насос, она же ESP, она же вон те палочки и барабанчики. УЭЦН - именно она (женского роду)! Хотя и состоит из них (мужского роду). Это такая специальная штука, при помощи которой доблестные нефтяники (а точнее сервисники для нефтяников) достают из-под земли пластовую жидкость - так мы называем ту муляку, которую потом (по прохождении специальной обработки) называют всякими интересными словами типа URALS или BRENT. Это целый комплекс оборудования, что бы сделать который, нужны знания металлурга, металообработчика, механика, электрика, электронщика, гидравлика, кабельщика, нефтяника и даже немного гинеколога и проктолога. Штука достаточно интересная и необычная, хотя придумана много лет назад, и с тех пор не сильно поменявшаяся. По большому счету это обычный насосный агрегат. Необычного в нем то, что он тонкий (самый распространенный помещается в скважину с внутренним диаметром 123 мм), длинный (есть установки по 70 метров длиной) и работает в таких поганых условиях, в которых более менее сложный механизм вообще не должен существовать.

Итак, в составе каждой УЭЦН есть следующие узлы:

ЭЦН (электроцентробежный насос) - главный узел - все остальные его предохраняют и обеспечивают. Насосу достается больше всего - но он и делает основную работу - подъем жидкости - жизнь у него такая. Насос состоит из секций, а секции из ступеней. Чем больше ступеней - тем больше напор, который развивает насос. Чем больше сама ступень - тем больше дебит (количество жидкости прокачиваемой за единицу времени). Чем больше дебит и напор - тем больше он жрет энергии. Все взаимосвязано. Насосы кроме дебита и напора отличаются еще габаритом и исполнением - стандартные, износостойкие, коррозионостойкие, износо-коррозионостойкие, совсем-совсем износо-коррозионостойкие.

ПЭД (погружной электродвигатель) Электродвигатель второй главный узел - крутит насос - жрет энергию. Это обычный (в электрическом плане) асинхронный электродвигатель - только он тонкий и длинный. У двигателя два главных параметра - мощность и габарит. И опять же есть разные исполнения стандартный, теплостойкий, коррозионостойкий, особо теплостойкий, и вообще - не убиваемый (как будто бы). Двигатель заполнен специальным маслом, которое, кроме того, что смазывает, еще и охлаждает двигатель, и до кучи компенсирует давление, оказываемое на двигатель снаружи.

Протектор (еще его называют гидрозащитой) - штука которая стоит между насосом и двигателем - он во первых - делит полость двигателя заполненную маслом от полости насоса заполненной пластовой жидкостью, передавая при этом вращение, а во вторых - решает проблему уравнивания давления внутри двигателя и снаружи (там вообще то до 400 атм бывает, это примерно как на трети глубины Марианской впадины). Бывают разных габаритов и опять же исполнения всякие бла бла бла.

Кабель - собственно он кабель. Медный, трехжильный.. Еще он бронированный. Представляете? Бронированный кабель! Конечно, он не выдержит выстрел даже из Макарова, но зато выдержит пять-шесть спусков в скважину и будет там работать - достаточно долго.
Бронирование у него несколько другое, рассчитанное скорее на трение, чем на острый удар - но всетаки. Кабель бывает разных сечений (диаметров жил), отличается броней (обычная оцинкованная или из нержавейки), а еще он отличается температурной стойкостью. Есть кабель на 90, 120, 150, 200 и даже 230 градусов. То есть может неограниченно долго работать при температуре в два раза превышающей температуру кипения воды (заметьте - мы добываем вроде как нефть, а она очень даже не хило горит - но ведь надо же кабель с теплостойкостью свыше 200 градусов - и причем практически повсеместно).

Газосепаратор (или газосепаратор-диспергатор, или просто диспергатор, или сдвоенный газосепаратор, или даже сдвоенный газосепаратор-диспергатор). Штука, которая отделяет свободный газ от жидкости.. вернее жидкость от свободного газа… короче снижает количество свободного газа на входе в насос. Часто, очень часто количества свободного газа на входе в насос вполне достаточно, что бы насос не работал - тогда ставят какое либо газостабилизирующее устройство (названия я перечислил в начале абзаца). Если нет необходимости ставить газосепаратор - ставят входной модуль, жидкость же как то должна попадать в насос? Вот. Что то ставят в любом случае.. Либо модуль, либо газик.

ТМС - это своего рода тюнинг. Кто как расшифровывает - термоманометрическая система, телеметрия.. кто как. Правильно (это старое название - из 80 лохматых годов) - термоманометрическая система, так и будем обзывать - бо почти полностью объясняет функцию устройства - меряет температуру и давление - там - прям внизу - практически в преисподней.

Есть еще защитные устройства. Это обратный клапан (самый распространенный - КОШ - клапан обратный шариковый) - что бы жидкость не сливалась из труб, когда насос остановлен (подъем столба жидкости по стандартной трубе может занимать несколько часов - как то жалко этого времени). А когда нужно поднять насос - этот клапан мешается - из труб постоянно что то льется, загаживая все вокруг. Для этих целей есть сбивной (или сливной) клапан КС - смешная штука - которую каждый раз ломают когда поднимают из скважины.

Все это хозяйство висит на насосно-компрессорных трубах (НКТ - заборы из них делают очень часто в околонефтяных городах). Висит в следующей последовательности:
Вдоль НКТ (2-3 километра) - кабель, сверху - КС, потом КОШ, потом ЭЦН, потом газик (или входной модуль), затем протектор, дальше ПЭД, а еще ниже ТМС. Кабель проходит вдоль ЭЦНа, газика и протектора до самой головы двигателя. Эка. Все сверх на голову короче. Так вот - от верху ЭЦНа до низа ТМСа может быть 70 метров. и сквозь эти 70 метров проходит вал, и все это вращается… а вокруг - большая температура, огромное давление, дофига мехпримесей, коррозионноактиваня среда.. Бедные насосики…

Все штуки секционные, секции длиной не более 9-10 метров (иначе как их в скважину засунуть?) Собирается установка непосредственно на скважине: ПЭД, к нему пристегивается кабель, протектор, газик, секции насоса, клапана, трубы.. Да! не забываем прикреплять кабель ко всему при помощи клямс - (такие пояски стальные специальные). Все это макается в скважину и долго (надеюсь) там работает. Что бы это все запитать (и как-то этим управлять) на земле ставят повышающий трансформатор (ТМПН) и станцию управления.

Вот такой штукой добывают то, что потом превращается в деньги (бензин, дизтопливо, пластмассы и прочую фигню).

Попробуем разобраться.. как это все устроено, как делается, как выбирать и как использовать.

Схема УЭЦН

УЭЦН – установка электроцентробежного насоса, в английском варианте - ESP (electric submersible pump). По количеству скважин, в которых работают такие насосы, они уступают установкам ШГН, но зато по объемам добычи нефти, которая добывается с их помощью, УЭЦН вне конкуренции. С помощью УЭЦН добывается порядка 80% всей нефти в России.

В общем и целом УЭЦН - обычный насосный агрегат, только тонкий и длинный. И умеет работать в среде отличающейся своей агрессивностью к присутствующим в ней механизмам. Состоит он из погружного насосного агрегата (электродвигатель с гидрозащитой + насос), кабельной линии, колонны НКТ, оборудования устья скважины и наземного оборудования (трансформатора и станции управления).

Основные узлы УЭЦН:

ЭЦН (электроцентробежный насос) – ключевой элемент установки, который собственно и осуществляет подъем жидкости из скважины на поверхность. Состоит он из секций, которые в свою очередь состоят из ступеней (направляющих аппаратов) и большого числа рабочих колес собранных на валу и заключенных в стальной корпус (трубу). Основные характеристики ЭЦН – это дебит и напор, поэтому в названии каждого насоса присутствуют эти параметры. Например, ЭЦН-60-1200 перекачивает 60 м 3 /сут жидкости с напором 1200 метров.

ПЭД (погружной электродвигатель) – второй по важности элемент. Представляет собой асинхронный электродвигатель, заполненный специальным маслом.

Протектор (или гидрозащита) – элемент, расположенный между электродвигателем и насосом. Отделяет электродвигатель, заполненный маслом от насоса заполненного пластовой жидкостью и при этом передает вращение от двигателя к насосу.

Кабель , с помощью которого к погружному электродвигателю подводится электроэнергия. Кабель бронированный. На поверхности и до глубины спуска насоса он круглого сечения (КРБК), а на участке погружного агрегата вдоль насоса и гидрозащиты - плоский (КПБК).

Дополнительное оборудование:

Газосепаратор – используется для снижения количества газа на входе в насос. Если необходимости в снижении количества газа нет, то используется простой входной модуль, через который в насос поступает скважинная жидкость.

ТМС – термоманометрическая система. Градусник и манометр в одном лице. Выдает нам на поверхность данные о температуре и давлении той среды, в которой работает спущенный в скважину ЭЦН.

Вся эта установка собирается непосредственно при ее спуске в скважину. Собирается последовательно снизу вверх не забывая про кабель, который пристегивается к самой установке и к НКТ, на которых все это и висит, специальными металлическими поясами. На поверхности кабель запитывается на устанавливаемые вблизи куста повышающий трансформатор (ТМПН) и станцию управления.

Помимо уже перечисленных узлов в колонне насосно-компрессорных труб над электроцентробежным насосом устанавливаются обратный и сливной клапаны.

Обратный клапан (КОШ - клапан обратный шариковый) используется для заполнения насосно-компрессорных труб жидкостью перед пуском насоса. Он же не позволяет жидкости сливаться вниз при остановках насоса. Во время работы насоса обратный клапан находится в открытом положении под действием давления снизу.

Над обратным клапаном монтируется сливной клапан (КС) , который используется для спуска жидкости из НКТ перед подъемом насоса из скважины.

Электроцентробежные погружные насосы имеют значительные преимущества перед глубинными штанговыми насосами:

  • Простота наземного оборудования;
  • Возможность отбора жидкости из скважин до 15000 м 3 /сут;
  • Возможность использовать их на скважинах с глубиной более 3000 метров;
  • Высокий (от 500 суток до 2-3 лет и более) межремонтный период работы ЭЦН;
  • Возможность проведения исследований в скважинах без подъема насосного оборудования;
  • Менее трудоемкие методы удаления парафина со стенок насосно-компрессорных труб.

Электроцентробежные погружные насосы могут применяться в глубоких и наклонных нефтяных скважинах (и даже в горизонтальных), в сильно обводненных скважинах, в скважинах с йодо-бромистыми водами, с высокой минерализацией пластовых вод, для подъема соляных и кислотных растворов. Кроме того, разработаны и выпускаются электроцентробежные насосы для одновременно-раздельной эксплуатации нескольких горизонтов в одной скважине со 146 мм и 168 мм обсадными колоннами. Иногда электроцентробежные насосы применяются также для закачки минерализованной пластовой воды в нефтяной пласт с целью поддержания пластового давления.

Похожие публикации