Интернет-журнал дачника. Сад и огород своими руками

Транскрипцией называют. Этапы транскрипции

Транскрипция – понятие, употребляемое сразу в нескольких дисциплинах. В фонетике транскрипция служит для того, чтобы записать звучащую речь знаками. Она основана на однозначном соответствии межу графическим символом и звуком. Понять, что такое фонетическая транскрипция очень просто. Достаточно просто сравнить звучание слова с его графическим обозначением. Написание транскрипции слова иногда вызывает затруднения, потому что в русском языке звучание в корне отличается от написания слова. Чего не скажешь о таком языке, как немецкий. В нем буквы, зафиксированные на бумаге, в точности повторяют звуки, поэтому изучать этот язык очень просто. Рассмотрим, что такое транскрипция слова.

Транскрипция в фонетике

Для записи слова звуками обычно транскрибируемые звуки заключают в скобки (квадратные). Паузы в транскрибируемой речи фиксируются как #, но они очень часто и вовсе не учитываются на письме.

Слова, которые состоят из нескольких слогов, должны иметь в своей транскрипции ударения. В случае, когда два слова (чаще всего это слово и предлог) произносятся слитно, при записи транскрипции между этими словами ставится лига _.

Что касается русской фонетики, то здесь используются только кириллица для записи звуков. Согласные звуки записываются эквивалентными буквами русского алфавита, рядом с ними или над ними ставятся значки, которые обозначают мягкость, долготу звучания и иные особенности звука.

Некоторые звуки похожи друг на друга, поэтому при записи их можно перепутать, что является самой частой ошибкой при транскрибировании. Трансляция – это чтение слова по указанной транскрипции. Таким образом, можно легко понять, что такое транскрипция и трансляция в русском языке и как её правильно записывать.

Транскрипция в музыке

Так как транскрипция – это понятие, присущее различным наукам, то для сравнения необходимо рассмотреть, что такое транскрипция в музыке. Очень часто музыканты самостоятельно перекладывают музыкальное произведение, предназначенное для другого инструмента на свой, и исполняют его в собственной обработке. Этот процесс и называют транскрипцией. Таким образом, чтение нотных обозначений здесь сравнивается с записью слов, а воспроизведение музыки инструментом аналогично воспроизведению звуков органами речи.

Транскрипция в биологии

В биологии транскрипция – это более сложное понятие, которое означает синтез РНК с применением ДНК, который используется в качестве матрицы. Этот процесс происходит с определенной частотой во всех живых организмах. Проще говоря, это процесс переноса информации о гене с ДНК на РНК. Рассмотрим подробнее, что такое транскрипция в биологии.

В биологии, в отличие от музыки и русского языка, трансляцией называется именно процесс катализации ферментами. Транскрипция состоит из нескольких стадий: инициации, элонгации и терминации. Начальный этап процесса напрямую зависит от последовательности элементов ДНК рядом с транскрибируемой последовательностью, а также от отсутствия и наличия белков.

Второй этап точно не закреплен в условные рамки. Однако он характеризует три главных события, а именно: отделение сигма-фактора, предварительная транлокация фермента по направлению матрицы, а также стабилизация транскрипционного комплекса, который также включает в себя и растущую цепь РНК. Фаза элонгации заканчивается очень часто после того как освобождается транскрипт и производится диссоциация фермента. Элонгация расплетает ДНК на 18 пар нуклеотидов по мере продвижения внутрь РНК-полимеразы.

Третья стадия менее всего изучена у человека и других высших организмов, однако у растений она проходит наиболее просто и быстро. Создаются связи между мРНК и ДНК, результатом чего становится освобождение одной из молекул РНК.

Однозначно, чтобы узнать, что такое транскрипция в медицине, нужно обладать глубокими знаниями в этой науке. Транскрипция очень часто используется при изучении генетических и иных заболеваний.

что такое транскрипция

  1. Транскрипция - это запись звучания буквы или слова в виде последовательности специальных фонетических символов.
  2. Запись звуков
  3. Транскрипция - это запись звучания буквы или слова в виде последовательности специальных фонетических символо
  4. Это правильное произношение звуков.
    Также это символы, которые звуки и обозначают
  5. френч
  6. Неожидал, что это слово имеет столько значений; так же как, например, слово "априори".
    Транскрипция (в биологии) БСЭ
    Транскрипция в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (РНК) на матрице - дезоксирибонуклеиновой кислоте (ДНК) . Т. - один из фундаментальных биологических процессов, первый этап реализации генетической информации.
    Транскрипция ветхозаветных имен и географических названий Библиологический словарь
    ТРАНСКРИПЦИЯ ВЕТХОЗАВЕТНЫХ ИМЕН И ГЕОГРАФИЧЕСКИХ НАЗВАНИЙ, передача этих имен и названий в древних и новых переводах Библии с целью приблизительного сохранения звучания.
    Транскрипция Музыкальный словарь
    Транскрипция (лат. , "переписка"), собственно то же, что аранжировка пьесы для иного состава инструментов, чем она написала в оригинале; но употребляется часто также в том же смысле, как и парафраза, фантазия (наприм.
    Транскрипция (переписывание) БСЭ
    Транскрипция (от лат. transcriptio - переписывание) , письменное воспроизведение слов и текстов с учтом их произношения средствами определнной графической системы.
    Транскрипция Краткий музыкальный словарь
    ТРАНСКРИПЦИЯ - свободная виртуозная обработка произведений, написанных в оригинале для других исполнительских средств. Известны фортепианные транскрипции песен Ф. Шуберта, сделанные Ф. Листом, скрипичные транскрипции оперных отрывков.
    Транскрипция Экономический словарь
    ТРАНСКРИПЦИЯ - перенос дебетовых или кредитовых статей в торговых книгах.
    Транскрипция Словарь Ушакова
    В нашем словаре греческие и восточные слова помещены в латинской транскрипции. Международная фонетическая т. (точная передача звуков речи при помощи условного алфавита; лингв.) . Нотная т. 3. Переложение музыкального произведения для другого.. .
    Транскрипция. Естественные науки
    Транскрипция - биосинтез РНК на матрице ДНК, осуществляющийся в клетках организма. Транскрипция - первый этап реализации генетического кода, в ходе которого последовательность нуклеотидов ДНК переписывается в нуклеотидную последовательность РНК.
    Транскрипция (в музыке) БСЭ
    Транскрипция в музыке, переложение музыкального произведения (аранжировка) или его свободная виртуозная обработка (концертная Т) . Играла важную роль в становлении инструментальной музыки.
    Транскрипция Брокгауз и Ефрон
    Транскрипция, 1) лат. , письм. изображение звуков и форм известн. , языка, обладающего или не обладающего собствен. системой письма, при помощи письмен. системы.
    Транскрипция - прием перевода лексической единицы оригинала путем воссоздания ее звуковой формы с помощью букв языка перевода. Безэквивалентная лексика Приемы перевода.
    Транскрипция. Общественные науки
    Транскрипция - переложение музыкального произведения (аранжировка) или его свободная виртуозная обработка (концертная транскрипция) . Композитор, создающий транскрипцию, не строго придерживается оригинала.
    Транскрипция Издательский словарь
    ТРАНСКРИПЦИЯ, или практическая транскрипция, - передача буквами языка перевода (языка издания) , как произносится на языке оригинала непереводимое слово; напр.
    Транскрипция Джаз, рок- и поп-музыка
    Транскрипция (лат. transcriptio - переписывание) - термин, означающий переложение, переработку музыкального произведения или нотную запись музыки на слух.
    Обратная транскрипция. Естественные науки
    Обратная транскрипция - синтез ДНК на матрице РНК. При этом перенос генетической информации осуществляется от РНК к ДНК. Транскрипция.
    Оперон БСЭ
    В начале О. обычно локализован промотор инициирующий транскрипцию участок ДНК, с которым специфически связывается фермент РНК-полимераза, осуществляющая транскрипцию.
  7. Транскри#769;пция процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках.
    Транскри#769;пция (слово буквально значит переписывание, от trans- через, пере- + scribo черчу, пишу):
  8. Транскрипция (от латинского transcription- переписывание) - запись слов в полном соответствии с их звучанием.
    В русском языке не всегда написанные слова соответствуют их произношению. Чтобы показать произношение слова, используется особая запись, которая называется ТРАНСКРИПЦИЕЙ.
    В транскрипции применяются специальные знаки.
  9. транскрипция это как делать фонытический розбор слова то ко с скобками

Транскрипция I Транскри́пция (от лат. transcriptio - переписывание)

письменное воспроизведение слов и текстов с учётом их произношения средствами определённой графической системы. Т. бывает научная и практическая. Научная Т. применяется в лингвистических исследованиях речи и может быть двух типов: фонетической (точная передача звукового состава слов с отражением места ударения и позиционного варьирования, см. Позиция) и фонематической (передача фонемного состава слов без учёта позиционных изменений фонем (См. Фонема)). Фонетическая Т. используется в двуязычных словарях; она даётся в квадратных скобках, в отличие от фонематической Т. (в косых или ломаных скобках). Обычно научная Т. строится на базе латинского алфавита с добавлением специальных букв и диакритических знаков (См. Диакритические знаки). Наиболее распространённая система Т. - универсальный алфавит Международной фонетической ассоциации, созданный в 1886 и постепенно совершенствующийся. Для языков с кириллической письменностью (и прежде всего русской) применяется также система Т. на базе кириллицы (См. Кириллица). Например, «подходить»: фонетическая Т. - [пътхад’и́т’], фонематической Т. - (подход’ит’). Иногда для специальных научных целей используется так называемые аналитические фонетические Т., в которой каждый знак соответствует не целому звуку, а отдельному элементу его артикуляции (огублённость, смычка и т.д.); наиболее известная из таких систем - Т. анальфабетическая И. О. Есперсен а. Практическая Т. - запись средствами данного национального алфавита непереводимых иноязычных слов. Проблема практической Т. возникает главным образом при передаче на письме иностранных личных имён и фамилий, географических названий и т.п. Практическая Т. менее точна, чем научная, индивидуальна для каждого языка; в ней нет специальных знаков, отсутствующих в практическом алфавите данного языка. Например, «Пушкин» передаётся во французском тексте, как Pouchkine, в немецком - Puschkin, в венгерском - Puskin и т.п. Хорошая практическая Т. всегда отражает исконное звучание слова (пример неправильной Т., сохраняющейся по традиции, - «Гудзон» вместо «Хадсон» для английское Hudson). Т. следует отличать от транслитерации (См. Транслитерация) и орфографии (См. Орфография).

Лит.: Аванесов Р. И., Фонетика современного русского литературного языка, М., 1956; Зиндер Л. Р., Общая фонетика, Л., 1960; Щерба Л. В., Фонетика французского языка, 7 изд., М., 1963; Реформатский А. А., Введение в языковедение, 4 изд., М., 1967.

В. А. Виноградов.

Международный фонетический алфавит.

II Транскри́пция

в музыке, переложение музыкального произведения (Аранжировка) или его свободная виртуозная обработка (концертная Т.). Играла важную роль в становлении инструментальной музыки; в 16 в. значительную часть произведений для клавишных инструментов составляли Т. вокальных сочинений. Широкую известность приобрели многие фортепьянные транскрипции Ф. Листа, Ф. Бузони, Л. Годовского, М. А. Балакирева, С. В. Рахманинова, К. Таузига, а также скрипичные Т. Ф. Крейслера. См. также Парафраз .

III Транскри́пция

в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (См. Рибонуклеиновые кислоты) (РНК) на матрице - дезоксирибонуклеиновой кислоте (См. Дезоксирибонуклеиновая кислота) (ДНК). Т. - один из фундаментальных биологических процессов, первый этап реализации генетической информации, записанной в ДНК в виде линейной последовательности 4 типов мономерных звеньев - нуклеотидов (См. Нуклеотиды) (см. Генетический код). Т. осуществляется специальными ферментами - ДНК зависимыми РНК-полимерами. В результате Т. образуется полимерная цепь РНК (также состоящая из нуклеотидов), последовательность мономерных звеньев которой повторяет последовательность мономерных звеньев одной из двух комплементарных цепей копируемого участка ДНК. Продуктом Т. являются 4 типа РНК, выполняющих различные функции: 1) информационные, или матричные, РНК, выполняющие роль матриц при синтезе белка рибосомами (Трансляция); 2) рибосомальные РНК, являющиеся структурными компонентами рибосом (См. Рибосомы); 3) транспортные РНК, являющиеся основными элементами, осуществляющими при синтезе белка перекодирование информации, заключённой в информационной РНК, с языка нуклеотидов на язык аминокислот; 4) РНК, играющие роль затравки репликации (См. Репликация) ДНК. Т. ДНК происходит отдельными участками, в которые входит один или несколько генов (см., например, Оперон). Фермент РНК-полимераза «узнаёт» начало такого участка (промотор), присоединяется к нему, расплетает двойную спираль ДНК и копирует, начиная с этого места, одну из её цепей, перемещаясь вдоль ДНК и последовательно присоединяя мономерные звенья - нуклеотиды - к образующейся РНК в соответствии с принципом комплементарности (См. Комплементарность). По мере движения РНК-полимеразы растущая цепь РНК отходит от матрицы и двойная спираль ДНК позади фермента восстанавливается (рис. ). Когда РНК-полимераза достигает конца копируемого участка (терминатора), РНК отделяется от матрицы. Число копий разных участков ДНК зависит от потребности клеток в соответственных белках и может меняться в зависимости от условий среды или в ходе развития организма. Механизм регуляции Т. хорошо изучен у бактерий; изучение регуляции Т. у высших организмов - одна из важнейших задач молекулярной биологии (См. Молекулярная биология).

Перенос информации возможен не только с ДНК на РНК, но и в обратном направлении - с РНК на ДНК. Подобная обратная Т. происходит у РНК-содержащих опухолеродных вирусов (См. Опухолеродные вирусы). В их составе обнаружен фермент, который после заражения клеток использует вирусную РНК как матрицу для синтеза комплементарной нити ДНК. В результате образуется двунитевой РНК-ДНК гибрид, используемый для синтеза второй нити ДНК, комплементарной первой. Возникающая двуспиральная ДНК, несущая всю информацию исходной РНК, может встраиваться в хромосомы клетки, пораженной вирусом, и вызывать её злокачественное перерождение. Открытие обратной Т. послужило веским подтверждением вирусно-генетической теории рака, выдвинутой советским учёным Л. А. Зильбер ом. Обратная Т., возможно, играет важную роль в системах реализации и накопления информации в нормальных клетках, например при эмбриональном развитии.

Фермент, осуществляющий обратную Т.- РНК зависимая ДНК-полимераза (обратная транскриптаза, ревертаза), подобен по свойствам ДНК зависимым ДНК-полимеразам и значительно отличается от ДНК зависимых РНК-полимераз, ведущих Т.

Лит.: Темин Г., РНК направляет синтез ДНК, «Природа», 1972, № 9; Гершензон С. М., Обратная транскрипция и ее значение для общей генетики и онкологии, «Успехи современной биологии», 1973, т. 75, №3; Стент Г., Молекулярная генетика, пер. с англ., М., 1974, гл. 16.

Б. Г. Никифоров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Транскрипция" в других словарях:

    ТРАНСКРИПЦИЯ, транскрипции, жен. (лат. transcriptio переписывание) (спец.). 1. только ед. Изображение (букв) другими письменными знаками или изображение (звуков речи, музыкальных звуков) средствами письма. Транскрипция греческих букв латинскими… … Толковый словарь Ушакова

    - (фр. transcription). 1) в музыке: переделка, переложение музыкальной пьесы, напр. для другого инструмента. 2) перемещение имени: написание одного имени вместо другого; применение алфавита одного языка к писанию на другом языке. Словарь… … Словарь иностранных слов русского языка

    транскрипция - и, ж. transcription f., нем. Transcription <лат. transcriptio переписывание.1. лингв. Точная передача звуков какого л. языка или музыкальных звуков условными буквами или специальными знаками в отличие от исторически сложившейся системы письма… … Исторический словарь галлицизмов русского языка

    - (музыкальное), переложение музыкального произведения для какого либо инструмента. Например, транскрипция для фортепьяно песен Ф. Шуберта, фрагментов из опер Дж. Верди, В.А. Моцарта, принадлежащие Ф. Листу (около 500) … Современная энциклопедия

    В биологии биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК переписывается в нуклеотидную последовательность РНК. Возможна также …

    - (от лат. transcriptio, букв. переписывание), биосинтез молекул РНК, на соотв. участках ДНК; первый этап реализации генетич. информации в живых клетках. Осуществляется ферментом ДНК зависимой РНК полимеразой, к рая у большинства изученных… … Биологический энциклопедический словарь

    Запись, передача, биосинтез, переложение Словарь русских синонимов. транскрипция сущ., кол во синонимов: 4 биосинтез (3) … Словарь синонимов

    Транскрипция - ТРАНСКРИПЦИЯ, или практическая транскрипция, передача буквами языка перевода (языка издания), как произносится на языке оригинала непереводимое слово; напр., передача буквами русского алфавита, как произносится на англ. языке непереводимое с него … Издательский словарь-справочник

    - (биологическое), биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации, в процессе которого последовательность нуклеотидов ДНК переписывается в нуклеотидную последовательность РНК … Современная энциклопедия

    В музыке переложение произведения для другого инструмента или свободная, часто виртуозная переработка его для того же инструмента … Большой Энциклопедический словарь

IV. ТРАНСКРИПЦИЯ

Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции (рис. 4-26).

Рис. 4-26. Схема реализации генетической информации в фенотипические признаки. Реализацию потока информации в клетке можно представить схемой ДНК-"РНК-"белок. ДНК-"РНК обозначает биосинтез молекул РНК (транскрипцию); РНК-"белок означает биосинтез полипептидных цепей (трансляцию).

Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный.принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонукле-озидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) -субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования 3",5"-фосфодиэфирной связи между рибонуклеозидмонофосфатами.

Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции -транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген (рис. 4-27), у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).

Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называетсяматричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте (рис. 4-28).

Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определённом белке.

РНК-полимеразы

Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - олигомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β", σ. Субъединица о (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции, РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.

А. Стадии транскрипции

В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию.

Инициация

Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора -ТАТААА- (ТАТА-бокс) (рис. 4-29).

Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка,

Рис. 4-27. Строение транскриптона.

Рис. 4-28. Транскрипция РНК на матричный цепи ДНК. Синтез РНК всегда происходит в направлении 5" → 3".

Рис. 4-29. Строение промотора эукариотов. Промоторные элементы - специфические последовательности нуклеотидов, характерные для любого промотора, связывающего РНК-полимеразу. Первый промоторный элемент - последовательность АТАТАА- (ТАТА-бокс) отделён от сайта начала транскрипции приблизительно на 25 пар нуклеотидов (п.н.). На расстоянии примерно 40 (иногда до 120) п.н. от него располагается последовательность GGCCAATC- (СААТ-бокс).

в которой матрица доступна для инициации синтеза цепи РНК (рис. 4-30).

После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.

Элонгация

Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5"- к З"-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной

вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3"- к 5"-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

Терминация

Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в

Рис. 4-30. Стадии транскрипции. 1 - присоединение ТАТА-фактора к промотору. Чтобы промотор был узнан РНК-полимера-зой, необходимо образование транскрипционного комплекса ТАТА-фактор/ТАТА-бокс (промотор). ТАТА-фактор остаётся связанным с ТАТА-боксом во время транскрипции, это облегчает использование промотора многими молекулами РНК-полимеразы; 2 - образование транскрипционной вилки; 3 - элонгация; 4.- терминация.

строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

Б. Ковалентная модификация (процессинг) матричной РНК

Первичные транскрипты мРНК, прежде чем будут использованы в ходе синтеза белка, подвергаются ряду ковалентных модификаций. Эти модификации необходимы для функционирования мРНК в качестве матрицы.

Модификация 5"-конца

Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидных остатков, происходит кэпирование его 5"-конца. Осуществляет кэпирование гуанилилтрансфераза. Фермент гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеотиддифосфатный остаток 5"-фосфатной группой к 5"-концу синтезированного фрагмента РНК с образованием 5", 5"-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N 7 -метилгуанозина завершает формирование кэпа (рис. 4-31).

Рис. 4-31. Ковалентная модификация концевых нуклеотидных остатков первичного транскрипта мРНК.

Модифицированный 5"-конец обеспечивает инициацию трансляции, удлиняет время жизни мРНК, защищая её от действия 5"-экзонуклеаз в цитоплазме. Кэпирование необходимо для инициации синтеза белка, так как инициирующие триплеты AUG, GUG распознаются рибосомой только если присутствует кэп. Наличие кэпа также необходимо для работы сложной ферментной системы, обеспечивающей удаление нитронов.

Модификация 3"-конца

3"-Конец большинства транскриптов, синтезированных РНК-полимеразой II, также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность (полиА-"хвост"), состоящая из 100-200 остатков аде-ниловой кислоты.

Сигналом к началу полиаденилирования является последовательность -AAUAAA- на растущей цепи РНК. Фермент полиА-полимераза, проявляя экзонуклеазную активность, разрывает 3"-фосфоэфирную связь после появления в цепи РНК специфической последовательности -AAUAAA-. К 3"-концу в точке разрыва полиА-полимераза наращивает по-лиА-"хвост", Наличие полиА-последовательности на 3"-конце облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме.

Ферменты, осуществляющие кэширование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.

Сплайсинг первичных транскриптов мРНК

С появлением методов, позволяющих изучать первичную структуру молекул мРНК в цитоплазме и последовательность нуклеотидов кодирующей её геномной ДНК, было установлено, что они не комплементарны, а длина гена в несколько раз больше "зрелой" мРНК. Последовательности нуклеотидов, присутствующие в ДНК, но не входящие в состав зрелой мРНК, были названы некодирующими, или интроны, а последовательности, присутствующие в мРНК, - кодирующими, или экзоны. Таким образом, первичный транскрипт - строго комплементарная матрице нуклеиновая кислота (пре-мРНК), содержащая как экзоны, так и интроны. Длина интронов варьирует от 80 до 1000 нуклеотидов. Последовательности интронов "вырезаются" из первичного транскрипта, концы экзонов соединяются друг с другом. Такую модификацию РНК называют "сплайсинг" (от англ, to splice - сращивать). Сплайсинг происходит в ядре, в цитоплазму поступает уже "зрелая" мРНК.

Гены эукариотов содержат больше интронов, чем экзонов, поэтому очень длинные молекулы пре-мРНК (около 5000 нуклеотидов) после сплайсинга превращаются в более короткие молекулы цитоплазматической мРНК (от 500 до 3000 нуклеотидов).

Процесс "вырезания" интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП). В состав мяРНП входит малая ядерная РНК (мяРНК), нуклеотидная цепь которой связана с белковым остовом, состоящим из нескольких протомеров. В сплайсинге принимают участие различные мяРНП (рис. 4-32).

Нуклеотидные последовательности нитронов функционально неактивны. Но на 5"- и З"-концах они имеют высокоспецифические последовательности - AGGU- и GAGG- соответственно (сайты сплайсинга), которые обеспечивают их удаление из молекулы пре-мРНК. Изменение структуры этих последовательностей влияет на процесс сплайсинга.

На первой стадии процесса мяРНП связываются со специфическими последовательностями первичного транскрипта (сайты сплайсинга), далее к ним присоединяются другие мяРНП. При формировании структуры сплайсосомы 3"-конец одного экзона сближается с 5"-концом следующего экзона. Сплайсосома катализирует реакцию расщепления 3",5"-фосфодиэфирной связи на границе экзона с интроном. Последовательность интрона удаляется, а два экзона соединяются. Образование 3",5"-фосфодиэфирной связи между двумя экзонами катализируют мяРНК (малые ядерные РНК), входящие в структуру сплайсосомы. В результате сплайсинга из первичных транскриптов мРНК образуются молекулы "зрелой" мРНК.

Альтернативный сплайсинг первичных транскриптов мРНЕ

Для некоторых генов описаны альтернативные пути сплайсинга и полиаденилирования одного и того же транскрипта. Экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути, поэтому молекулы мРНК, образованные в результате альтернативного сплайсинга, различаются набором экзонов. Это приводит к образованию разных мРНК и, соответственно, разных белков с одного первичного транскрипта. Так, в парафолликулярных клетках щитовидной железы (рис. 4-33) в ходе транскрипции гена гормона кальцитонина (см. раздел 11) образуется первичный транскрипт мРНК, который состоит из шести экзонов. Матричная РНК кальцитонина образуется путём сплайсинга первых четырёх экзонов (1-4). Последний (четвёртый) экзон содержит сигнал полиаденилирования (последовательность -AAUAAA-), узнаваемый полиА-полимеразой в парафолликулярных клетках щитовидной железы. Этот же первичный транскрипт в клетках головного мозга в ходе другого (альтернативного)

Рис. 4-32. Сплайсинг РНК. В процессе сплайсинга принимают участие различные мяРНП, которые формируют сплайсосому. мяРНП, взаимодействуя с РНК и друг с другом, фиксируют и ориентируют реакционные группы первичного транскрипта. Каталитическая функция сплайсосом обусловлена РНК-составляющими; такие РНК называют рибозимами.

Рис. 4-33. Альтернативный сплайсинг гена кальцитонина. В клетках щитовидной железы сплайсинг первичного транскрипта приводит к образованию кальцитониновои мРНК, включающей 4 экзона и полиА-последовательность, которая образуется после расщепления транскрипта в первом участке сигнала полиаденилирования. В клетках мозга образуется мРНК, содержащая: экзоны 1, 2, 3, 5, 6 и полиА-последовательность, образованную после второго сигнала полиаденилирования.

пути сплайсинга превращается в мРНК кальцитонинподобного белка, отвечающего за вкусовое восприятие. Матричная РНК этого белка состоит из первых трёх экзонов, общих с кальцитониновои мРНК, но включает дополнительно пятый и шестой экзоны, не свойственные мРНК кальцитонина. Шестой экзон тоже имеет сигнал полиаденилирования -AAUAAA-, узнаваемый ферментом полиА-полимеразой в клетках нервной ткани. Выбор одного из путей (альтернативный сплайсинг) и одного из возможных сайтов полиаденилирования играет важную роль в тканеспецифической экспрессии генов.

Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка. Разные изоформы тропонина образуются в разных тканях на определённых стадиях их развития.

В. Процессинг первичных транскриптов рибосомной РНК и транспортной РНК

Гены, кодирующие большую часть структурных РНК, транскрибируются РНК-полимера-зами I и III. Нуклеиновые кислоты - предшественники рРНК и тРНК - подвергаются в ядре расщеплению и химической модификации (процессингу).

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

Первичный транскрипт тРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичных транскриптов тРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков (рис. 4-34).

Посттранскрипционные модификации (процессинг) первичного транскрипта рРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичных транскриптов. Первичные транскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Рис. 4-34. Процессинг пре-тРНК. Определённые азотистые основания нукпеотидов тРНК в ходе процессинга метилируются под действием РНК-метилазы и превращаются, например, в 7-метилгуанозин и 2-метилгуанозин (минорные основания). В молекуле тРНК содержатся и другие необычные основания - псевдоуридин, дигидроуридин, которые также модифицируются во время процессинга.

Рис. 4-35. Образование и выход из ядра субъединиц рибосом. В результате процессинга из молекулы предшественника 45S рРНК образуются три типа рРНК: 18S, входящая в состав малой субъединицы рибосом, а также 28S и 5,8S, локализующиеся в большой субъединице. Все три рРНК образуются в равных количествах, так как они происходят из одного и того же первичного транскрипта. 5S рРНК большой субъединицы рибосом транскрибируется отдельно от первичного транскрипта 45S рРНК. Рибосомальные РНК, образованные в ходе посттранскрипционных модификаций, связываются со специфическими белками, и образуется рибосома.

Рибосома - органелла клетки, участвующая в биосинтезе белка. Рибосома эукариотов (80S) состоит из двух, большой и малой, субъединиц: 60S и 40S. Белки рибосом выполняют структурную, регуляторную и каталитическую функции.

В биологии процессы транскрипции и трансляции рассматривают в рамках биосинтеза белка. Хотя в процессе транскрипции никакого синтеза белка не происходит. Но без нее невозможна трансляция (т. е. непосредственный синтез белка). Транскрипция предшествует трансляции.

Протекающие в клетках транскрипция и трансляция согласуются с так называемой догмой молекулярной биологии (выдвинутой Ф. Криком в середине XX века): поток информации в клетках идет в направлении от нуклеиновых кислот (ДНК и РНК) к белкам, но никогда наоборот (то есть от белков к нуклеиновым кислотам). Это значит, что нуклеиновая кислота может служить информационной матрицей для синтеза белка, а белок не может выступать таковой для синтеза нуклеиновой кислоты.

Транскрипция

Транскрипция представляет собой синтез молекулы РНК на молекуле ДНК . То есть ДНК служит матрицей для синтеза РНК.

Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. Следует помнить, что ферменты - это в основном белки (это касается и РНК-полимеразы).

РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов. Таким образом, РНК по-сути идентична участку другой цепи ДНК (на которой не происходит синтез), так как цепи молекулы ДНК также комплементарны друг другу. Только в РНК тимин заменен на урацил.

Синтез нуклеиновых кислот происходит в направлении от 5"-конца молекул к их 3"-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5"→3", но по цепи ДНК движется в ее направлении 3"→5".

Участок ДНК, на котором происходит транскрипция (транскриптон, оперон), состоит из трех частей: промотора, гена (в случае иРНК, вообще - транскрибируемой части) и терминатора.

Для инициации (начала) транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.

Терминация (окончание) транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.

У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.

Трансляция

Трансляция представляет собой синтез полипептидной (белковой) цепи на молекуле информационной (она же матричная) РНК. По-другому трансляцию можно описать как перевод информации, закодированной с помощью нуклеотидов (триплетов-кодонов), в информацию, представленную в виде последовательности аминокислот. Этот процесс протекает при участии рибосом (в состав которых входит рибосомальная РНК) и транспортной РНК. Таким образом, в непосредственном синтезе белка принимают участие все три основных типа РНК .

При трансляции рибосомы насаживаются на начало цепи иРНК и далее движутся по ней в направлении к ее концу. При этом происходит синтез белка.

Внутри рибосомы есть два «места», где могут поместиться две тРНК. Транспортные РНК, заходящие в рибосому, несут одну аминокислоту. Внутри рибосомы синтезируемая полипептидная цепь присоединяется к вновь прибывшей аминокислоте, связанной с тРНК. После чего эта тРНК передвигается на другое «место», из него же удаляется «старая», уже свободная от растущей полипепдидной цепи тРНК. На освободившееся место приходит еще одна тРНК с аминокислотой. И процесс повторяется.

Активный центр рибосомы катализирует образование пептидной связи между вновь прибывшей аминокислотой и ранее синтезированным участком белка.

В рибосому помещаются два кодона (всего 6 нуклеотидов) иРНК. Антикодоны тРНК, заходящих в рибосому, должны быть комплементарны кодонам, на которых «сидит» рибосома. Разным аминокислотам соответствуют разные тРНК (различающиеся своими антикодонами).

Таким образом, каждая тРНК несет свою аминокислоту. При этом следует иметь в виду, что аминокислот, принимающих участие в биосинтезе белка, всего около 20, а смысловых (обозначающих аминокислоту) кодонов около 60-ти. Следовательно, одну аминокислоту могут переносить разные тРНК, но их антикодоны соответствуют одной и той же аминокислоте.

Похожие публикации