Интернет-журнал дачника. Сад и огород своими руками

Методы нормализации состава воздуха рабочей зоны. Определение запыленности воздуха помещения Методы измерения пыли в воздухе

Хорошо изученным и давно используемым на практике методом оценки запыленности воздуха промышленных предприятий является весовой метод, суть которого состоит в определении привеса при пропускании через фильтр определенного объема исследуемого воздуха. В качестве фильтров обычно используют хлопковую (гигроскопическую) или стеклянную вату. В стеклянную трубку, называемую пылевой, или аллонжем, с притертыми пробками помещают 0,5 г гигроскопической или 2 г стеклянной ваты так, чтобы толщина слоя фильтра составляла 3-4 см. Плотность фильтра должна быть такой, чтобы при пропускании через трубку 15-20 мл воздуха в минуту сопротивление фильтра составляло примерно 100 мм вод. ст.

Снаряженную и проверенную пылевую трубку доводят до постоянного веса просушиванием. Пробу берут на уровне дыхания работающего, фиксируя объем пропускаемого воздуха. Для получения более точного результата в каждой точке замера отбирают не менее двух проб.

После окончания замеров пылевую трубку повторно доводят до постоянного веса просушиванием. Разница в весе трубки до и после пропускания запыленного воздуха характеризует содержание пыли в объеме воздуха, прошедшего через трубку. Представление о запыленности исследуемого воздуха дает последующий перерасчет на единицу объема (кубометр воздуха) и сравнение с установленной санитарной нормой.

В ряде случаев необходимо наряду с концентрацией пыли знать также размер частиц (дисперсность) пыли, а иногда и количество пылинок, содержащихся в единице объема воздуха. С этой целью может быть использован метод непосредственного наблюдения и подсчета с применением микроскопа.

В производственных условиях при использовании весового метода обычно применяют серийно выпускаемые аэрозольные аналитические фильтры типа АФА из перхлорвинилового волокна. В последнее время при исследовании запыленных потоков получили распространение радиоизотопный, оптический, электронно-зондовый и другие методы.

Сейчас промышленностью освоен выпуск различных приборов и установок для анализа аэрозолей: радиоизотопный пылемер «Приз–2» (определение концентраций пыли в воздухе рабочей зоны в диапазоне 1–500 мг/м3); контрольно-измерительный комплекс «Пост–1» (автоматическое измерение и запись содержания в атмосферном воздухе пыли и сажи), лаборатория комплексная «Пост–2», автоматический одноканальный пробоотборник АПП–6–1 (отбор аэрозоля из воздуха для

определения концентраций прямым методом), дозиметр пыли индивидуальный ДП–1 (отбор проб аэрозоля для определения концентраций прямым методом при запыленности воздуха более 15 мг/м3), пробоотборное устройство ПУ-ЭР-220, пробоотборное устройство ПУ-ЭР-12 (отбор проб воздуха с последующим определением концентрации, дисперсного, минерального, химического, микробиологического состава и исследования свойств аэрозоля при параллельном использовании весового, оптического, гранулометрического, электронно-зондового и микробиологического анализа осажденных частиц аэрозоля)

Бытовая пыль в воздухе - крупные частицы пыли, парящие в воздухе, которые можно увидеть в ярких лучах солнечного света, падающего из окна, не представляет опасности для здоровья – они быстро оседают и не проникают глубоко в легкие.

Но пыль в воздухе далеко не всегда заметна невооруженным глазом.

Влияние запыленности воздуха на здоровье и самочувствие может быть различным в зависимости от химического состава, происхождения, размеров и плотности частиц. По характеру это может быть как небольшое раздражающее воздействие, так и острое токсическое отравление.

Наибольшую опасность представляют частицы пыли с размерами менее 10 мкм (PM10), которые легко проникают в дыхательные пути, и менее 2.5 мкм (PM2.5), проникающие глубоко в легкие.

ИСТОЧНИКИ И ПРИЧИНЫ ЗАПЫЛЕННОСТИ ВОЗДУХА

Причин запыленности воздуха в квартирах, офисах, на производствах, как и источников пыли в атмосферном воздухе – бесконечное множество. И если пыль природного происхождения чаще всего неопасна, то антропогенные источники – выбросы транспорта и промышленных предприятий – являются причиной появления в воздухе пыли, содержащей множество вредных веществ – тяжелых металлов, углеводородов, бенз(а)пирена... Еще большее разнообразие источников пыли - в воздухе рабочей зоны.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ ПЫЛИ В ВОЗДУХЕ

Предельно-допустимые концентрации взвешенных частиц PM10 и PM2.5 в атмосферном воздухе и воздухе жилых и общественных зданий были установлены в России только в 2010 году:

ПДК ПЫЛИ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

Нормы содержания различных аэрозольных частиц, пыли, сажи в воздухе рабочей зоны, установленные ГН 2.2.5.1313-03, в среднем значительно выше, чем для атмосферного воздуха и жилых помещений. В зависимости от происхождения и состава максимальные разовые ПДК различных аэрозолей в воздухе рабочей зоны установлены в очень широких пределах. Для сажи и аэрозоля, содержащего от 10 до 60% диоксида кремния максимальная разовая ПДК составляет 6 мг/м 3 , а среднесменная – 2 мг/м 3 .

НОРМАТИВЫ ВОЗ ПО ЗАПЫЛЕННОСТИ ВОЗДУХА (PM10, PM2.5)

Всемирная организация здравоохранения считает частицы пыли в воздухе одной из серьезнейших опасностей и причин множества заболеваний дыхательных путей и сердечно-сосудистой системы. Предельные концентрации частиц PM10 и PM2.5 в воздухе установлены в документе под названием «Руководство по качеству воздуха» («Air quality guidelines») в виде среднесуточных и среднегодовых величин:

По мнению экспертов ВОЗ, только достижение таких уровней концентраций пыли в воздухе может позволить снизить смертность от легочных и сердечных заболеваний, ассоциированных с качеством воздуха. Руководство ВОЗ по качеству воздуха появилось в 2005 году, и, как видим, российские нормативы, принятые в 2010, менее требовательны к качеству атмосферного воздуха и воздуха в помещениях. Однако надо понимать, что приведенные рекомендации ВОЗ – это всего лишь «идеал, к которому следует стремиться».

МЕТОДИКИ ОПРЕДЕЛЕНИЯ ПЫЛИ В ВОЗДУХЕ

Существует несколько основных методов измерения массовой концентрации аэрозолей в воздухе.

Наиболее распространенный метод – гравиметрия, при которой пробы воздуха прокачиваются через фильтр, и по разности массы фильтра до и после отбора пробы, измеряется концентрация пыли в воздухе. Метод имеет как преимущества, так и недостатки. Он требует очень длительного отбора проб для анализа атмосферного воздуха, в котором частицы пыли, как правило, содержатся в низких концентрация, но при этом обладает высокой точностью при определении больших концентраций пыли в воздухе рабочей зоны. Для определения содержания в воздухе пыли различных фракций используются специальные вспомогательные устройства – импакторы, позволяющие разделять частицы разных аэродинамических размеров.

Другой метод анализа воздуха на аэрозоли – оптический. Для анализа используется анализатор пыли ("пылемер"), позволяющий в режиме реального времени измерять концентрации общей пыли, PM10, PM4, PM2.5, PM1. Технически, прибор измеряет счетную концентрацию частиц аэрозоля в воздухе, а расчет массовой концентрации проводится на основе заложенных в программу моделей распределения массы частиц в зависимости от их размера и калибровочных зависимостей. Для калибровки прибора может использоваться импактор и гравиметрический метод, что позволяет достигать высокой точности измерений.

Главным достоинством данного метода является возможность быстро и с приемлемой точностью измерять низкие концентрации частиц в воздухе, поэтому при анализе атмосферного воздуха и воздуха в квартирах и офисных помещениях используется именно оптический метод.

Еще одна распространённая гравиметрическая методика применяется для определения сажи в атмосферном воздухе и воздухе рабочей зоны. Принципиально анализ массовой концентрации ничем не отличается от измерения концентраций пыли в воздухе гравиметрическим методом. Разница заключается в том, что доля сажи в измеренной массе частиц, осевших на фильтр, определяется фотометрически.

ПЫЛЬ В ВОЗДУХЕ. ЦЕНА, СРОКИ АНАЛИЗА ЗАПЫЛЕННОСТИ ВОЗДУХА

  • Согласование сроков выезда специалиста: от 30 минут .
  • Время измерений в одной точке: от 10 до 30 минут.
  • Результат оказания услуги: протокол анализа воздуха
  • Общий срок оказания услуги: 2-3 рабочих дня .
Пыль в воздухе: стоимость анализа воздуха на (пыль, сажа)
Вид исследования Цена, руб.
Анализ воздуха анализатором пыли (пыль в воздухе: PM10, PM1, PM2.5, PM1, общая пыль) 2 000
Анализ воздуха анализатором пыли (пыль в воздухе: PM10, PM1, PM2.5, PM1, общая пыль), дополнительная точка измерений 1 000
Анализ воздуха рабочей зоны гравиметрическим методом 2 500
Анализ воздуха рабочей зоны гравиметрическим методом, дополнительная точка измерений 1 250
Анализ воздуха (сажа) 3 000
Анализ воздуха (сажа), дополнительная точка измерений 2 000

Методы определения запыленности воздуха разделяют на две группы:

С выделением дисперсной фазы из аэрозоля - весовой или массовый (гравиметрический), счетный (кониметрический), радиоизотопный, фотометрический;

Без выделения дисперсной фазы из аэрозоля - фотоэлектрические, оптические, акустические, электрические.

В основу гигиенического нормирования содержания пыли в воздухе рабочей зоны положен весовой метод. Метод основан на протягивании запыленного воздуха через специальный фильтр, задерживающий пы­левые частицы. Зная массу фильтра до и после отбора пробы, а также количество отфильтрованного воздуха, рассчитывают содержание пыли в единице объема воздуха.

Суть счетного способа состоит в следующем: проводится отбор определенного объема запыленного воздуха, из которого частички пыли осаждаются на специальный мембранный фильтр. Послечего проводится подсчет числа пылинок, исследуется их форма и дисперсность под микроскопом. Концентрация пыли при счетном методе выражается числом пылинок в 1 см 3 воздуха.

Радиоизотопный метод измерения концентрации пыли основан на свойстве радиоактивного излучения (обычно α-излучения) поглощаться частицами пыли. Концентрацию пыли определяют по степени ослабления радиоактивного излучения при прохождении через слой накопленной пыли.

Министерством здравоохранения и социального развития утверждены нормативные документы по определению содержания пыли:

МУ № 4436-87 «Измерение концентраций аэрозолей преимущественно фиброгенного действия»;

МУ № 4945-88 «Методические указания по определению вредных веществ в сварочном аэрозоле (твердая фаза и газы)».

Измерение запыленности весовым (гравиметрическим) методом

При измерениях концентрации пыли предварительно взвешенный «чистый» фильтр АФА-ВП-20 (АФА-ВП-10) закрепляют в патроне (аллонже), который соединяют шлангом с аспиратором ПУ-3Э и протягивают через фильтр такое количество воздуха, чтобы навеска уловленной пыли составляла от 1,0 до 50,0 мг (для АФА-ВП-10 от 0,5 до 25,0 мг).

Аспирационный фильтр аналитический (АФА) изготавливают из фильтровальной ткани ФПП-15, имеющей заряд статического электричества. Применение аналитических фильтров типа АФА позволяет анализировать воздушную среду с высокой степенью точности. Они обладают высокой задерживающей способностью, малым аэродинамическим сопротивлением потоку воздуха, большой пропускной способностью (до 100 л/мин), небольшой массой, малой гигроскопичностью, возможностью определять концентрацию пыли независимо от ее физических и химических свойств. Для удобства обращения края фильтров опрессовывают и помещают в защитные обоймы (рис. 2).

Рис. 2. Фильтр типа АФА

1 – фильтрационный материал; 2 – защитная обойма

Для отбора проб используются аспираторы. Мето­ды и аппаратура, используемые для определения концентрации пыли, должны обеспечивать определение величины концентрации пыли на уровне 0,3 ПДК с относительной стандартной погрешностью, не пре­вышающей ±40% при 95% вероятности. При этом для всех видов про­боотборников относительная стандартная ошибка определения пыли науровне ПДК не должна превышать ±25%. Для отбора проб рекоменду­ется использовать фильтры АФА-ВП-10, 20, АФА-ДП-3.

После просасывания запыленного воздуха фильтр извлекают из аллонжа, повторно взвешивают на аналитических весах с точностью до 0,1 мг и определяют массу навески пыли ΔР на фильтре по разности масс «чистого» и «грязного» фильтров.

Концентрация пыли при рабочих условиях:

, мг/м 3 (1)

где ΔР = Р к – Р н – масса уловленной фильтром пыли, мг; Р н и Р к – масса фильтра АФА соответственно до и после аспирации, мг;V зам – объем воздуха, из которого выделили пыль на фильтре, м 3 .

Одновременно с отбором проб воздуха на запыленность измеряют температуру (T, 0 С) и давление воздуха (В, мм рт. ст.) для приведения объема воздуха при рабочих условияхV зам, из которого выделили пыль на фильтре, к стандартным условиям (760 мм рт. ст. и 20 0 С):

, м 3 (2)

Тогда концентрация пыли в воздухе при стандартных условиях:

, мг/м 3 (3)

Результаты измерений и расчетов используют для санитарно-гигиенической оценки воздуха рабочей зоны по пылевому фактору, соотнося с предельно допустимыми концентрациями (ПДК), а также для определения эффективности способов и средств борьбы с пылью.

Производственной пыльюназываются находящиеся во взве­шенном состоянии в воздухе рабочей зоны твердые частицы раз­мером от нескольких десятков до долей микрона. Пыль принято также называть аэрозолем, имея в виду, что воздух является дис­персной средой, а твердые частицы - дисперсной фазой. Произ­водственную пыль классифицируют по способу образования, происхождения и размерам частиц. .

В соответствии со способом образования различают пьщй (аэ­розоли) дезинтеграции и кяиденсации. Первые; являются следст­

вием производственных операций, связанных с разрушением или измельчением твердых материалов и транспортировкой сыпучих веществ. Второй путь образования пыли - возникновение твер­дых частиц в воздухе вследствие охлаждения или конденсации паров металлов или неметаллов, выделяющихся при высокотем­пературных процессах.

По происхождению различают пыль органическую, неоргани­ческую и смешанную. Характер и выраженность вредного дейст­вия зависят, прежде всего, от химического состава пыли, который главным образом определяется ее происхождением. Вдыхание пыли может вызвать поражение органов дакания - бронхит, пневмокониоз или развитие общих реакций (интоксикация, ал­лергия). Некоторые пыли обладают канцерогенными свойствами. Действие Пыли проявляется в заболеваниях верхних дыхательных путей, слизистой оболочки глаз, кожных покровов. Вдыхание пыли может способствовать возникновению пневмоний, туберку­лёза, рака легких. Пневмокониозы относятся к числу наиболее распространенных профессиональных заболеваний. Исключи­тельно высокое значение имеет классификация пыли по размеру ПЫлевЫх частиц (дисперсности): видимая пыль (размер свыше 10 мкм)6ыстро оседает из воздуха, при вдыхании она задерживается в верхних дыхательных путях И удаляется При кашле, чихании, с мокротой; микроскопическая пыль (0,25 -10 мкм) более устойчи­ва в воздухе, при вдыхании попадает в альвеолы легких и дейст­вует на легочную ткань; ультрамикроскопическая пыль (менее 0,25 мкм), в легких ее задерживается до 60-70%, но роль ее в раз­витии пылевых поражений не является решающей, так как неве­лика ее общая масса.

Вредное действие пыли определяется также и другими ее свойствами: растворимостью, формой частиц, их твердостью, структурой, адсорбционными свойствами, электрозаряженнстью. Например, электрозаряженность пыли влияет на устойчивость аэрозоля; частицы, несущие электрический заряд, в 2-3 раза больше задерживаются в дыхательном тракте. "

Основным способом борьбы с пылью является предупреждение ее; образования и выделения в воздух, где наиболее эффективными являются мероприятия технологического и организационного ха­рактера: внедрение непрерывной технологии, механизации работ;

герметизация оборудования, пневнотранспортирование, дистанци­онное управление; замена пылящих материалов влажными, пасто­образными, гранулирование; аспирация и др.

Большое значение имеет применение систем искусственной вентиляции, дополняющее основные технологические мероприя­тия по борьбе с пылью. Для борьбы с вторичным пылеобразовд- нием, т.е. поступлением в воздух уже осевшей пыли, используют влажные методы уборки, ионизацшг воздуха и др.

В случаях, когда не удается снизить запыленность воздуха в рабочей зоне более радикальными мероприятиями технологиче­ского и другого характера, применяются индивидуальныезащит- ные средства различного типа: респираторы, специальные шлемы и скафандры с подачей в них чистого воздуха. ,

Необходимость строгого собшодения ПДК требует система­тического контроля за фактическим содержанием пыли в воздухе рабочей зоны производственного помещения.

К автоматическим приборам определения концентрации пыли относятся серийно выпускаемые промышленностью ИЗВ-1, ИЗВ-3 (измеритель запыленности воздуха), ПРИЗ-1 (переносной радио­изотопный измеритель запыленности), ИКП-1 (измеритель кон­центрации пыли) и др.

    Вентиляция производственных помещений

Вентиляция- это комплекс взаимосвязанных процессов, предназначенных для создания организованного воздухообмена, т.е. удаления из производственного помещения загрязненного или перегретого (охлажденного) воздуха и подачи вместо; него чистого и охлажденного (нагретого) воздуха, что позволяет соз­дать в рабочей зоне благоприятные условия воздушной среды.

Системы промышленной вентиляции делятся на механиче­скую(см. рис.6.5) иестественную.Возможно сочетание этих двух видов вентиляции (смешанная вентиляция) в различных ва­риантах. " " " V

В первом случае воздухообмен осуществляется с помощью специальных побудителей движения - вентиляторов, во втором -

за счет разности удельных весов воздуха снаружи и внутри про­изводственного помещения, а также за счет ветрового подпора (давления от ветровых нагрузок). По месту действия различают обшеобменнуюсистему вентиляции, осуществляющую воздухо­обмен в масштабах всего производственного помещения, и мест­ную, при которой воздухообмен организуется в масштабах лишь рабочей зоны. Специфической характеристикой общеобменных систем вентиляции является кратность воздухообмена:

к=у/у пом,

где V - объем вентиляционного воздуха, м 3 /час;V n 0 M - объем по­мещения, м 3 .

Общеобменные системы могут быть приточными (организу­ется только приток, а вытяжка происходит естественным путем из-за повышения давления в помещении), вытяжными (организу­ется только вытяжка, а приток происходит путем подсоса воздуха извне из-за его разряженности в помещении) и приточно­вытяжными (организуется как приток, так и вытяжка). Приточно­вытяжная естественная вентиляция называется аэрацией. Мест­ные системы могут быть вытяжными и приточными.

Основные требования к системам вентиляции:

    соответствие количества приточнбго воздуха количеству удаляемого. Следует иметь в виду, что в случае расположе- ййя рядом двух участков, на одном из которых есть вредные выделения, на этом участке создают небольшое разрежение, для чего удаляют воздуха больше, чем подают, а на участке, где нет вредных выделений, - наоборот. Повышение давле­ния на «чистом» участке по отношению к смежному исклю­чает проникновение в него вредных паров, газов и пылей;

    приточные и вытяжные системы вентиляции должны быть правильно размещены. Удаление воздуха производится из зо­ны с наибольшим загрязнением, подача - в зоны с наимень­шим загрязнением. Высота расположения воздухоприемных и воздухораспределительных устройств определяется соотно­шением плотности воздуха в помещении и плотности вещест­ва, его загрязняющего. При тяжелых загрязнениях воздух уда­ляется из нижней части помещения, при легких - из верхней.

Системы вентиляции должны обеспечить требуемую чистоту воздуха и микроклимат в рабочей зоне, быть электро-, пожаро- и взрывобезопасны, просты по устройству, надежны в эксплуата­ции и эффективны, а также не должны являться источником шу- май вибрации. .

Рис. 6.5. Механическая вентиляция: а - приточная; б - вытяжная; в - приточно-вытяжная с рециркуляцией

Установки приточной систем!# вентиляции (рис. 6.5а) состоят из воздухозаборного устройства (1), воздуховодов (2), фильтров

    для очистки забираемого воздуха от примесей, калорифера

    Центробежного вентилятора (5) и приточных устройств (6) (отверстия в воздуховодах, приточные насадки и т.п.).

Установки вытяжной системы вентиляции (рис. 6.56) состоят из вытяжцых устройств (7) (отверстия в воздуховодах, вытяжные на­садки), вентилятора (5Х воздуховодов (2), устройства для очистки воздуха от пыли и газов (8) и устройств для выброса воздуха (9).

Установки приточно-вытяжной системы вентиляции (рис. 6.5в) представляют собой замкнутые системы воздухообмена. Воздух, отсасываемый из помещения (10) вытяжной вентиляци­ей, частично или полностью вторично подается в это помещение через приточную систему, соединенную с вытяжной системой воздуховодом (11). При изменении качественного состава воздух в замкнутой системе подается или выбрасывается с помощью

клапанов (12).

В производственных цехах промышленных предприятий наи­более распространены общеобменные системы приточно­вытяжной вентиляции, предназначенные для удаления из поме-

щений вредных паров, газов, пыли, избыточной влажности или доведена концентраций указанных вредных веществ до пре-; дельно допустимых норм. . ,

В производственные помещения могут поступать одновре­менно несколько вредных веществ. В этом случае воздухообмен; рассчитывают по каждому из них. Если выделяющиеся вещества действуют на организм человека однонаправлено, то рассчитан­ные объемы воздуха суммируют. .

" г Рассчитанный объем воздуха следует подавать подогретым в рабочую зону помещения, а загрязненный воздух - удалять от мест выделения вредностей из верхней зоны помещения.

Объем воздуха (м 3 /ч), который требуется для удаления из по­мещения углекислоты, определяют по формуле:

L=G/(x 2 -х,)у

где G - количество углекислоты, выделяющейся в помещении, г/ч или л/ч;х i - концентрация углекислоты в наружном воздухе;х 2 - концентрация углекислоты в воздухе рабочей зоны, г/ м 3 или л/ м 3 . Объем воздуха (м^ч), который требуется для удаления из помеще­ния вредных паров, газов и пыли, определяют по формуле; :

^1=с/(с^-с^; : ■- 1 " ■" ■ ;

где G - количество газов, паров и пыли, выделяющихся в поме­щении, м 3 /ч;с 2 - предельно допустимая концентрация газа, паров или ныли в воздухе рабочей зоны, мг/м 3 ;c t - концентрация ука­занных вредностей в наружном {приточном) воздухе, мг/м 3 . ;

< Объем воздуха (м 3 /ч), который требуется для удаления из? но- Мещения вдагодабытков^ определяют по формуле: : ;

* 1 = С/р.(

где G - количество влаги, испаряющейся в помещении, г/ч; р - плотность воздуха в помещении, кг/м 3 ;d 2 - влагосодержание воз­духа, удаляемого из помещения, г/кг сухого воздуха;d t - влаго­содержание приточного воздуха г/кг сухого воздуха.

Объем воздуха (м 3 /ч), который требуется для удаления из по­мещения избыточной теплоты, определяют по формуле:

L ~ Оизб IСp(t ebt m~t n pum) > "

где Qms - количество избыточной теплоты, поступающей в по­мещение, Вт;С - удельная теплоемкость воздуха, Дж/(кгК);р - плотность воздуха в помещении, кг/ м 3 ;t eam - температура возду­ха в вытяжной системе,°С; t npum - температура приточного возду­ха, *С. ■■■■ -■ . - ■ ■ ■

Практическое применение приведенных в соответствии со СНиП 2-04.05-86 расчетов проиллюстрируем на ксТнкретных при­мерах.

Пример!.В помещении для кратковременного пребывания людей Собралось Н - 50 человек. Объем помещения V = 1000 м. Определить, через какое время после начала собрания необхо­димо включить приточно-вытяжную вентиляцию, если выде­ляемое одним человеком количество С0 2 q=23 л/ч в наружном воздухех = 0,6 л/м 3 .

, У(х 2 -х,)

■■■■- ■■G’ ■ ^

. . .% ....

где G количество С0 2 , выделяемое людьми,

G=JVд = 50-23 = 1150л/ч,1000(2- 0, 6)

“ Т=-- --- = 1,21ч=73л<ин

1150 ... . ...... ... . ;.

Пример 2. Определить необходимый воздухообмен по из*

быткам тепла в сборочном цехе для теплого периода года. Общая мощность оборудования в цехе Н 0 б 0р = 120 кВт. Коли­чество работающих - 40 человек. Объем помещения 2000 м 3 . Температура приточного воздухаt npHT = +22,3 °С, влажностьj= 84%. Тепло солнечной раДиацйи составляет 9 кВт. (Q cp). Удельная теплоёмкость сухого воздуха" С = 0,237 Вт/кгК; плотность приточного воздуха р = 1,13 Кг/м 3 ; температура вы­тяжного воздухаt BKT = 25,3”С. Принять количество тёпла, вы­деляемого одним человеком, 0,11<Г кВТ; от оборудования 0,2 на 1 кВт мощности

^ QuafiJ^Р^выт- ^прит)

, ,. р „ «<&л^ +&**":+fi^v^(u.-w

    Количество тепла от людей, кВт,

^^“=0,116x40 = 4,64

    Количество тепла от оборудования, кВт,

Qu 36 ° 6 ° P = 120х 0,2= 24

    Необходимый воздухообмен, м 3 /ч,

£= (4,63+ 24+9)-100 _ 44280

0,237-1,13(25,3-22,3)

    Кондиционирование воздуха

С помощью кондиционирования воздуха в закрытых по­мещениях и сооружениях можно поддерживать необходимую температуру, влажность, газовый и ионный состав, наличие запахов воздушной среды, а также скорость движения возду­ха. Обычно в общественных и производственных зданиях требуется поддерживать лишь часть указанных параметров воздушной среды. Система кондиционирования воздуха включает в себя комплекс технических средств, осуществ­ляющих требуемую обработку воздуха (фильтрацию, подог­рев, охлаждение, осушку и увлажнение), транспортирование ёго и распределение в обслуживаемых помещениях, устрой­ства для глушения шума, вызываемого работой оборудова- нйя, источники тепло- и хладоснабжения, средства автомати­ческого регулирования, контроля и управления, а также вспомогательное оборудование. Устройство, в котором осу­ществляется требуемая тепловлажностная обработка воздуха й его очистка, называется установкой кондиционирования воздуха, или кондиционером.

Кондиционирование воздуха обеспечивает в помещении не­обходимый микроклимат для нормального протекания техноло­гического процесса или создания условий комфорта. ■

    Отопление

Отопление предусматривает поддержание во всех производ­ственных зданиях и сооружениях (включая кабины крановщиков, помещения пультов управления и другие изолированные поме­щения, постоянные рабочие места и рабочую зону во время про­ведения основных и ремонтно-вспомогательных работ) темпера­туры, соответствующей установленным нормам.

Система отопления должна компенсировать потери тепла че­рез строительные ограждения, а также обеспечивать нагрев про­никающего -в помещение холодного воздуха при ввозе и вывозе, сырья, материалов и заготовок, а также самих этих материалов.

Отопление устраивается в тех случаях, когда потери тёпла превышают тепловыделения в помещении. В зависимости от теп­лоносителя системы отопления разделяются на водяные, паро­вые, воздушные и комбинированные.

Системы водяного отоплениянаиболее приемлемы в санитар­но-гигиеническом отношении и подразделяются на системы с на­гревом воды до 100°С и вышеiOO°C(перегретая вода).

Вода в систему отопления подается либо от собственной ко­тельной предприятия, либо от районной или городской котельной или ТЭЦ.

Система парового отопленияцелесообразна на предприятиях, где пар используется для технологического процесса. Нагрева­тельные приборы парового отопления имеют высокую темпера­туру, которая вызывает подгорание пьщи. В качестве нагрева­тельных приборов применяют радиаторы, ребристые трубы и регистры из гладких труб,

В производственных помещениях со значительным выделени­ем тепла устанавливаются приборы с гдадкимц поверхностями, допускающими их легкую очистку. Ребристые батареи в, таких помещениях не применяют, так как осевшая пыль вследствие на­грева будет пригорать* издавая запах гари. Пыль при высоком на­греве может быть опасна из-за возможности воспламенения. Температура теплоносителя при отоплении местньщи иагрева- тельными приборами не должна превышать: для горячей воды - 150°С, водяного пара - 130 0 С. *: » ; . :

Воздушная система отопления,характерна тем, что подавае­мый в помещение воздух предварительно нагревается в калори­ферах (водяных, паровых или электрокалориферах).

В зависимости от расположения и устройства системы воз­душного отопления бывают центральными и местными. В цен­тральныхсистемах, которые часто совмещаются с приточными вентиляционными системами, нагретый воздух подается по сис­теме воздуховодов.

Местная системавоздушного отопления представляет собой устройство, в котором воздухонагреватель и вентилятор совме­щены в одном агрегате, устанавливаемом в отапливаемом поме­щении.

Теплоноситель может быть получен от системы центрального водяного или парового отопления. Возможно применение элек­трического автономного нагрева. .

В административно-бытовых помещениях часто применяется панельное отопление, которое работает в результате отдачи тепла от строительных конструкций, в которых проложены трубы с циркулирующим в них теплоносителем.

производится аспирационным весовым (гравиметрическим) методом с помощью электроаспиратора (рис. 2).

Рис. 2. Электроаспиратор для отбора разовых проб пыли

Пыль − это дисперсная система, где раздробленное ве-щество (дисперсная фаза) находится в непрерывной дис-персной среде, т.е. это взвешенные в воздухе, медленно осе-дающие твердые частицы размером от 0,001 до 100 мкм или аэрозоль.

Принцип действия электроаспиратора заключается в протягивании определенного объема воздуха через аспира-


тор с осаждением пылевых частиц на бумажном фильтре. Метод основан на улавливании пыли из просасываемого че-рез фильтр воздуха при стандартной скорости аспирации 10-20 л/мин. с последующим пересчетом на 1 м 3 воздуха (1 м 3 = 1000 л). Анализ воздуха может производиться как в пробах, отобранных однократно (продолжительность отбора проб 15-20 мин.), так и многократно не менее 10 раз в сутки через равные интервалы времени с усреднением полученных дан-ных (кратность отбора проб в течение суток определяет вы-бор для оценки вида ПДК – среднесуточной или максималь-ной разовой). Отбор проб воздуха производят в зоне дыха-ния. Для отбора пробы фильтр укрепляют в аллонже (патро-не) электроаспиратора, пропускают через него воздух со ско-ростью 20 л/мин. (V ) в течение 10 мин. (Т ). Объем отобран-ной пробы воздуха рассчитывают по формуле:

υ=Т V,

где T – время отбора пробы, мин., V – скорость отбора про-бы, л/мин. Негигроскопичный аэрозольной фильтр, пред-ставляющий собой ультратонкие волокна полимера, зафик-сированный в бумажном кольце, взвешивают на аналитиче-ских весах с точностью до 0,1 мг до (А 1 ) и после (А 2 ) отбора пробы воздуха. Содержание пыли Х в 1 м 3 воздуха рассчиты-вают по формуле:

Х = [(А 2 − А 1) 1000]/ υ,

где Х – содержание пыли в воздухе, мг /м 3 ; А 1 и А 2 − вес фильтра до и после отбора пробы, мг; υ − объем воздуха, л.

Для гигиенической оценки загрязнения воздуха пылью установленное содержание пыли сравнивают с максимальной или среднесуточной ПДК нетоксичной пыли в атмосферном воздухе; характеризуют дисперсный и химический состав, морфологическое строение, электрическое состояние, приро-ду (органическая, неорганическая, смешанная) и механизм образования (аэрозоль дезинтеграции или конденсации).


Гигиенические нормативы пыли для атмосферного воз-

− максимальная разовая ПДК мр 2 = 0,5 мг/м 3 ,

− среднесуточная ПДК с/с 3 = 0,15 мг/м 3 .

В помещениях ЛПУ требования к содержанию пыли в воздухе определяются классификацией помещений по чисто-те и ограничиваются размером частиц 0,5 мкм и 5,0 мкм.



В производственных помещениях: ПДК нетоксичной пыли = 10 мг/м 3 , ПДК пыли, содержащей свободный диоксид кремния, = 1-2 мг/м 3 .

3. Определение микробного загрязнения воздуха осу-

ществляется аспирационным методом в модификации Кро-това. Аппарат Кротова представляет собой аспиратор со съемной крышкой. Исследуемый воздух всасывается со ско-ростью 20-25 л/мин. через клиновидную щель в крышке при-бора. При переносе аппарата Кротова из одного помещения в другое его поверхность обрабатывают дезинфицирующим раствором. Пробу воздуха отбирают 10 мин. (Т ) со скоро-стью 20 л/мин (V ). Объем отобранной пробы воздуха рассчи-тывают по формуле.

Похожие публикации