Интернет-журнал дачника. Сад и огород своими руками

Медицинская фирма "Лазеротерапия. ЛиК". Лазеры в медицине. Применение лазеров в медицине и науке

В медицине лазерные установки нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:

    Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

    Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

    Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

    Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

    Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

    Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

    Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

Характеристики некоторых типов лазеров.

В настоящее время имеется громадное разнообразие лазеров, отличающихся между собой активными средами, мощностями, режимами работы и другими характеристиками. Нет необходимости все их описывать. Поэтому здесь даётся краткое описание лазеров, которые достаточно полно представляют характеристики основных типов лазеров (режим работы, способы накачки и т. д.)

Рубиновый лазер. Первым квантовым генератором света был рубиновый лазер, созданный в 1960 году.

Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Аl 2 O 3 (корунд), в который при выращивании введен в виде примеси оксид хрома Сr 2 Оз. Красный цвет рубина обусловлен положительным ионом Сr +3 . В решетке кристалла Аl 2 О 3 ион Сг +3 замещает ион Аl +3 . Вследствие этого в кристалле возникают две полосы поглощения: одна-в зеленой, другая-в голубой части спектра. Густота красного цвета рубина зависит от концентрации ионов Сг +3: чем больше концентрация, тем гуще красный цвет. В темно-красном рубине концентрация ионов Сг +3 достигает 1%.

Наряду с голубой и зеленой полосами поглощения имеется два узких энергетических уровня Е 1 и Е 1 ’ , при переходе с которых на основной уровень излучается свет с длинами волн 694,3 и 692,8 нм. Ширина линий составляет при комнатных температурах примерно 0,4 нм. Вероятность вынужденных переходов для линии 694,3 нм больше, чем для 692,8 нм. Поэтому проще работать с линией 694,3 нм. Однако можно осуществить генерацию и линии 692,8 нм, если использовать специальные зеркала, имеющие большой коэффициент отражения для излучения l = 692,8 нм и малый - для l = 694,3 нм.

При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при прохождении через нее импульса тока, нагревающего газ до нескольких тысяч Кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не выдерживает непрерывного режима работы. Возникающее излучение близко по своим характеристикам к излучению абсолютно черного тела. Излучение поглощается ионами Cr + , переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Сr +3 очень быстро в результате безызлучательного перехода переходят на уровни Е 1 , Е 1 ’ . При этом излишек энергии передается решетке, т. е. превращается в энергию колебаний решетки или, другими словами, в энергию фотонов. Уровни Е 1 , Е 1 ’ метастабильны. Время жизни на уровне Е 1 равно 4,3 мс. В процессе импульса накачки на уровнях Е 1 , Е 1 ’ накапливаются возбужденные атомы, создающие значительную инверсную заселенность относительно уровня Е 0 (это уровень невозбужденных атомов).

Кристалл рубина выращивается в виде круглого цилиндра. Для лазера обычно используют кристаллы размером: длина L = 5 см, диаметр d = 1 см. Ксеноновая лампа и кристалл рубина помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также форму круглого цилиндра, помещаются в фокусы эллиптического сечения полости параллельно ее образующим. Благодаря этому на рубин направляется излучение с плотностью, практически равной плотности излучения на источнике накачки.

Один из концов рубинового кристалла срезан так, что от граней среза обеспечивается полное отражение и возвращение луча обратно. Такой срез заменяет одно из зеркал лазера. Второй конец рубинового кристалла срезан под углом Брюстера. Он обеспечивает выход из кристалла рубина без отражения луча с соответствующей линейной поляризацией. Второе зеркало резонатора ставится на пути этого луча. Таким образом, излучение рубинового лазера линейно поляризовано.

Гелий-неоновый лазер. Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.

Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.

При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 2 3 S и 2 2 S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона - 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, - около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.

Газовые лазеры . Они представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов. В настоящее время большие мощности в газовых лазерах не получены по той простой причине, что плотность атомов в них недостаточно велика. Однако почти для всех других целей можно найти конкретный тип газового лазера, который будет превосходить как твердотельные лазеры с оптической накачкой, так и полупроводниковые лазеры. Много усилий было направлено на то, чтобы эти лазеры могли конкурировать с газовыми лазерами, и в ряде случаев был достигнут определенный успех, однако он всегда оказывался на грани возможностей, в то время как газовые лазеры не обнаруживают никаких признаков уменьшения популярности.

Особенности газовых лазеров часто обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров. Поэтому длины волн переходов точно известны. Они определяются атомной структурой и обычно не зависят от условий окружающей среды. Стабильность длины волны генерации при определенных усилиях может быть значительно улучшена по сравнению со стабильностью спонтанного излучения. В настоящее время имеются лазеры с монохроматичностью, лучшей, чем в любом другом приборе. При соответствующем выборе активной среды может быть осуществлена генерация в любой части спектра, от ультрафиолетовой (~2ООО А) до далекой инфракрасной области (~ 0,4 мм), частично захватывая микроволновую область.

Нет также оснований сомневаться, что в будущем удастся создать лазеры для вакуумной ультрафиолетовой области спектра. Разреженность рабочего газа обеспечивает оптическую однородность среды с низким коэффициентом преломления, что позволяет применять простую математическую теорию для описания структуры мод резонатора и дает уверенность в том, что свойства выходного сигнала близки к теоретическим. Хотя КПД превращения электрической энергии в энергию вынужденного излучения в газовом лазере не может быть таким большим, как в полупроводниковом лазере, однако благодаря простоте управления разрядом газовый лазер оказывается для большинства целей наиболее удобным в работе как один из лабораторных приборов. Что касается большой мощности в непрерывном режиме (в противоположность импульсной мощности), то природа газовых лазеров позволяет им в этом отношении превзойти все другие типы лазеров.

С0 2 -лазер с замкнутым объемом. Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO 2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO 2 передается от молекул азота N 2 , которые сами возбуждаются электронным ударом при прохождении тока через смесь.

Возбужденное состояние молекулы азота N 2 является метастабильным и отстоит от основного уровня на расстоянии 2318 см -1 , что весьма близко к энергетическому уровню (001) молекулы CO 2 . Ввиду метастабильности возбужденного состояния N 2 при прохождении тока число возбужденных атомов накапливается. При столкновении N 2 с CO 2 происходит резонансная передача энергии возбуждения от N 2 к CO 2 . Вследствие этого возникает инверсия заселенностей между уровнями (001), (100), (020) молекул CO 2 . Обычно для уменьшения заселенности уровня (100), который имеет большое время жизни, что ухудшает генерацию при переходе на этот уровень, добавляют гелий. В типичных условиях смесь газов в лазере состоит из гелия (1330 Па), азота (133 Па) и углекислого газа (133 Па).

При работе CO 2 - лазера происходит распад молекул CO 2 на СО и О, благодаря чему активная среда ослабляется. Далее СО распадается на С и О, а углерод осаждается на электродах и стенках трубки. Всё это ухудшает работу СO 2 -лазера. Чтобы преодолеть вредное действие этих факторов в закрытую систему добавляют пары воды, которые стимулируют реакцию

СО + О ® CO 2 .

Используются платиновые электроды, материал которых является катализатором для этой реакции. Для увеличения запаса активной среды резонатор соединяется с дополнительными емкостями, содержащими CO 2 , N 2 , Не, которые в необходимом количестве добавляются в объём резонатора для поддержания оптимальных условий работы лазера. Такой закрытый CO 2 -лазер, в состоянии работать в течение многих тысяч часов.

Проточный СО 2 -лазер. Важной модификацией является проточный СО 2 -лазер, в котором смесь газов CO 2 , N 2 , Не непрерывно прокачивается через резонатор. Такой лазер может генерировать непрерывное когерентное излучение мощностью свыше 50 Вт на метр длины своей активной среды.

Неодимовый лазер. Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производятся лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний. Атомы совершают безызлучательные переходы на верхний лазерный уровень. Каждый переход дает разную энергию, которая превращается в колебательную энергию всей «решетки» атомов.

Лазерное излучение, т.е. переход на пустой нижний уровень, имеет длину волны 1,06 мкм.

Т-лазер. Во многих практических приложениях важную роль играет СO 2 -лазер, в котором рабочая смесь находится под атмосферным давлением и возбуждается поперечным электрическим полем (Т-лазер). Поскольку электроды расположены параллельно оси резонатора, для получения больших значений напряженности электрического поля в резонаторе требуются сравнительно небольшие разности потенциалов между электродами, что дает возможность работать в импульсном режиме при атмосферном давлении, когда концентрация CO 2 в резонаторе велика. Следовательно, удается получить большую мощность, достигающую обычно 10 МВт и больше в одном импульсе излучения продолжительностью менее 1 мкс. Частота повторения импульсов в таких лазерах составляет обычно несколько импульсов в минуту.

Газодинамические лазеры. Нагретая до высокой температуры (1000-2000 К) смесь CO 2 и N 2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.

Лазеры на красителях. Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро (за времена порядка 10 -11 -10 -12 с) переходит безызлучательно на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы Е 1 сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. А это означает, что если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров.

Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.

Полупроводниковые лазеры. Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).

Принципы работы МО накопителя.

МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера.

В процессе записи на МО диск лазерный луч нагревает определенные точки на диски, и под воздействием температуры сопротивляемость изменения полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность точки. После окончания нагрева сопротивляемость снова увеличивается. Полярность нагретой точки остается в соответствии с магнитным полем, примененным к ней в момент нагрева.

В имеющихся на сегодняшний день МО накопителях для записи информации применяются два цикла: цикл стирания и цикл записи. В процессе стирания магнитное поле имеет одинаковую полярность, соответствующую двоичным нулям. Лазерный луч нагревает последовательно весь стираемый участок и таким образом записывает на диск последовательность нулей. В цикле записи полярность магнитного поля меняется на противоположную, что соответствует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, оставляя участки с двоичными нулями без изменений.

В процессе чтения с МО диска используется эффект Керра, заключающийся в изменении плоскости поляризации отраженного лазерного луча, в зависимости от направления магнитного поля отражающего элемента. Отражающим элементом в данном случае является намагниченная при записи точка на поверхности диска, соответствующая одному биту хранимой информации. При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается.

Такой способ в отличие от обычного применяемого в оптических дисках не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничеваниие участков диска возможно только под действием высокой температуры, то вероятность случайного перемагничевания очень низкая, в отличие от традиционной магнитной записи, к потери которой могут привести случайные магнитные поля.

Область применения МО дисков определяется его высокими характеристиками по надежности, объему и сменяемости. МО диск необходим для задач, требующих большого дискового объема. Это такие задачи, как обработка изображений звука. Однако небольшая скорость доступа к данным, не дает возможности применять МО диски для задач с критичной реактивностью систем. Поэтому применение МО дисков в таких задачах сводится к хранению на них временной или резервной информации. Для МО дисков очень выгодным использованием является резервное копирование жестких дисков или баз данных. В отличие от традиционно применяемых для этих целей стримеров, при хранение резервной информации на МО дисках, существенно увеличивается скорость восстановления данных после сбоя. Это объясняется тем, что МО диски являются устройствами с произвольным доступом, что позволяет восстанавливать только те данные, в которых обнаружился сбой. Кроме этого при таком способе восстановления нет необходимости полностью останавливать систему до полного восстановления данных. Эти достоинства в сочетании с высокой надежностью хранения информации делают применение МО дисков при резервном копировании выгодным, хотя и более дорогим по сравнению со стримерами.

Применение МО дисков, также целесообразно при работе с приватной информацией больших объемов. Легкая сменяемость дисков позволяет использовать их только во время работы, не заботясь об охране компьютера в нерабочее время, данные могут храниться в отдельном, охраняемом месте. Это же свойство делает МО диски незаменимыми в ситуации, когда необходимо перевозить большие объемы с места на место, например с работы домой и обратно.

Основные перспективы развития МО дисков связаны прежде всего с увеличением скорости записи данных. Медленная скорость определяется в первую очередь двухпроходным алгоритмом записи. В этом алгоритме нули и единицы пишутся за разные проходы из-за того, что магнитное поле, задающие направление поляризации конкретных точек на диске, не может изменять свое направление достаточно быстро.

Наиболее реальная альтернатива двухпроходной записи - это технология, основанная на изменение фазового состояния. Такая система уже реализована некоторыми фирмами-производителями. Существуют еще несколько разработок в этом направлении, связанные с полимерными красителями и модуляциями магнитного поля и мощности излучения лазера.

Технология, основанная на изменении фазового состояния, основана на способности вещества переходить из кристаллического состояния в аморфное. Достаточно осветить некоторую точку на поверхности диска лучом лазера определенной мощности, как вещество в этой точке перейдет в аморфное состояние. При этом изменяется отражающая способность диска в этой точке. Запись информации происходит значительно быстрее, но при этом деформируется поверхность диска, что ограничивает число циклов перезаписи.

В настоящие время уже разрабатывается технология, позволяющая менять полярность магнитного поля на противоположную всего за несколько наносекунд. Это позволит изменять магнитное поле синхронно с поступлением данных на запись. Существует также технология, построенная на модуляции излучения лазера. В этой технологии дисковод работает в трех режимах: режим чтения с низкой интенсивностью, режим записи со средней интенсивностью и режим записи с высокой интенсивностью. Модуляция интенсивности лазерного луча требует более сложной структуры диска и дополнения механизма дисковода инициализирующим магнитом, установленным перед магнитом смещения и имеющим противоположную полярность. В самом простом случае диск имеет два рабочих слоя - инициализирующий и записывающий. Инициализирующий слой сделан из такого материала, что инициализирующий магнит может изменять его полярность без дополнительного воздействия лазера.

Безусловно МО диски перспективные и бурно развивающиеся устройства, которые могут решать назревающие проблемы с большими объемами информации. Но их дальнейшее развитие зависит не только от технологии записи на них, но и от прогресса в области других носителей информации. И если не будет изобретен более эффективный способ хранения информации, МО диски возможно займут доминирующие роли.

Ульяновский Государственный Университет

Факультет Трансферных специальностей

Реферат

По дисциплине:

“Концепции современного естествознания”

На тему:

“Лазер и его применение в медицине”

Выполнил:

Студент группы ФТС-17

Алешин Алексей

Ульяновск, 2009г.

1.Введение 3

2.Лазер 4

2.1 Устройство лазера 5

2.2 Классификация лазеров 9

3. Лазеры в медицине 10

3.1 Стоматология 11

3.2 Хирургия 15

3.3 Сосудистые заболевания кожи 16

3.4 Фотоомоложение кожи 17

3.5 Удаление татуировок и пигментных пятен 18

3.6 Применение лазера в лечении ЛОР-заболеваний 19

3.7 Офтальмология 20

4. Заключение 21

Источники 22

1.Введение

Уже самое начало XX века было отмечено величайшими достижениями человеческого ума. 7 мая 1895 г. на заседании Русского физико-химического общества А. С. Попов продемонстрировал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство предложил итальянский техник и предприниматель Г. Маркони. Так родилось радио. В конце уходящего века был создан автомобиль с бензиновым двигателем, который пришел на смену изобретенному еще в XVIIIв. паровому автомобилю. К началу XX столетия уже действовали линии метро в Лондоне, Нью-Йорке, Будапеште, Вене. 17 декабря 1903 г. американские инженеры братья Орвилл и Уилбор Райт пролетели 260м на созданном ими первом в мире аэроплане, а через 12 лет русский инженер И.И.Сикорский сконструировал и построил первый в мире многомоторный самолет, дав ему имя «Илья Муромец». Не менее потрясающими оказались достижения в физике. Только за одно десятилетие на рубеже двух веков было сделано пять открытий. В 1895г. немецкий физик В. Рентген открыл новый вид излучения, названный позднее его именем; за это открытие он получил в 1901г. Нобелевскую премию, став, таким образом, первым в истории нобелевским лауреатом. В 1896г. французский физик Антуан Анри Беккерель открыл явление радиоактивности - Нобелевская премия 1903 г. В 1897г. английский физик Дж. Дж. Томсон открыл электрон и в следующем году измерил его заряд - Нобелевская премия 1906г. 14 декабря 1900г. на заседании Немецкого физического общества Макс Планк дал вывод формулы для испускательной способности черного тела; этот вывод опирался на совершенно новые идеи, ставшие фундаментом квантовой теории - одной из основных физических теорий XX века. В 1905 г. молодой Альберт Эйнштейн - ему тогда было всего 26 лет - опубликовал специальную теорию относительности. Все эти открытия производили ошеломляющее впечатление и многих повергали в замешательство - они никак не укладывались в рамки существовавшей физики, требовали пересмотра ее основных представлений. Едва начавшись, 20-й век возвестил о рождении новой физики, обозначил невидимую грань, за которой осталась прежняя физика, получившая название «классическая». И вот сегодня человек получил в своё распоряжение всемогущий луч лазера. На что употребит он это новое завоевание ума? Чем станет лазер: универсальным инструментом, надёжным помощником или, напротив, грозным космическим оружием, ещё одним разрушителем?

2. Лазер

Ла́зер (англ.laser , сокр. от L ight A mplification by S timulated E mission of R adiation - «усиление света посредством вынужденного излучения»), опти́ческий ква́нтовыйгенера́тор - устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения. Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза. Физической основой работы лазера служит явление вынужденного (индуцированного) излучения . Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайное направление распространения, поляризацию и фазу.

Гелий-неоновый лазер. Светящийся луч в центре - это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки. Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.). Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет из себя два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности. Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

2.1 Устройство лазера.

Все лазеры состоят из трёх основных частей:

  • активной (рабочей) среды;
  • системы накачки (источник энергии);
  • оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Активная среда

В настоящее время в качестве рабочей среды лазера используются все агрегатные состояния вещества: твёрдое, жидкое, газообразное и даже плазма. В обычном состоянии число атомов, находящихся на возбуждённых энергетических уровнях определяется распределением Больцмана:

здесь N - число атомов, находящихся в возбуждённом состоянии с энергией E , N 0 - число атомов, находящихся в основном состоянии, k - постоянная Больцмана, T - температура среды. Иными словами таких атомов очень мало, поэтому вероятность того, что фотон, распространяясь по среде вызовет вынужденное излучение также очень мала по сравнению с вероятностью его поглощения. Поэтому электромагнитная волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения при этом падает по закону Бугера:

здесь I 0 - начальная интенсивность, I l - интенсивность излучения, прошедшего расстояние l в веществе, a 1 - коэффициент поглощения вещества. Поскольку зависимость экспоненциальная, излучение очень быстро поглощается.

В том случае, когда число возбуждённых атомов больше, чем невозбуждённых (то есть в состоянии инверсии населённостей), ситуация прямо противоположна. Акты вынужденного излучения преобладают над поглощением, и излучение усиливается по закону:

где a 2 - коэффициент квантового усиления. В реальных лазерах усиление происходит до тех пор пока величина поступающей за счёт вынужденного излучения энергии не станет равной величине энергии, теряемой в резонаторе. Эти потери связаны с насыщением метастабильного уровня рабочего вещества, после чего энергия накачки идёт только на его разогрев, а также с наличием множества других факторов (рассеяние на неоднородностях среды, поглощение примесями, неидеальностью отражающих зеркал, полезное и нежелательное излучение в окружающую среду и пр.).

Система накачки

Для создания инверсной населённости среды лазера используются различные механизмы. В твердотельных лазерах она осуществляется за счёт облучения мощными газоразрядными лампами-вспышками, сфокусированным солнечным излучением (так называемая оптическая накачка) и излучением других лазеров (в частности, полупроводниковых). При этом возможна работа только в импульсном режиме, поскольку требуются очень большие плотности энергии накачки, вызывающие при длительном воздействии сильный разогрев и разрушение стержня рабочего вещества. В газовых и жидкостных лазерах (см. гелий-неоновый лазер, лазер на красителях) используется накачка электрическим разрядом. Такие лазеры работают в непрерывном режиме. Накачка химических лазеров происходит посредством протекания в их активной среде химических реакций. При этом инверсия населённостей возникает либо непосредственно у продуктов реакции, либо у специально введённых примесей с подходящей структурой энергетических уровней. Накачка полупроводниковых лазеров происходит под действием сильного прямого тока через p-n переход, а также пучком электронов. Существуют и другие методы накачки (газодинамические, заключающиеся в резком охлаждении предварительно нагретых газов; фотодиссоциация, частный случай химической накачки и др.).

На рисунке: а - трёхуровневая и б - четырехуровневая схемы накачки активной среды лазера.

Классическая трёхуровневая система накачки рабочей среды используется, например, в рубиновом лазере. Рубин представляет из себя кристаллкорунда Al 2 O 3 , легированный небольшим количеством ионовхрома Cr 3+ , которые и являются источником лазерного излучения. Из-за влияния электрического полякристаллической решётки корунда внешний энергетический уровень хрома E 2 расщеплён (см. эффект Штарка). Именно это делает возможным использование немонохроматического излучения в качестве накачки. При этом атом переходит из основного состояния с энергией E 0 в возбуждённое с энергией около E 2 . В этом состоянии атом может находиться сравнительно недолго (порядка 10 −8 с), почти сразу происходит безизлучательный переход на уровень E 1 , на котором атом может находиться значительно дольше (до 10 −3 с), это так называемый метастабильный уровень. Возникает возможность осуществления индуцированного излучения под воздействием других случайных фотонов. Как только атомов, находящихся в метастабильном состоянии становится больше, чем в основном, начинается процесс генерации.

Следует отметить, что создать инверсию населённостей атомов хрома Cr с помощью накачки непосредственно с уровня E 0 на уровень E 1 нельзя. Это связано с тем, что если поглощение и вынужденное излучение происходят между двумя уровнями, то оба эти процесса протекают с одинаковой скоростью. Поэтому в данном случае накачка может лишь уравнять населённости двух уровней, чего недостаточно для возникновения генерации.

В некоторых лазерах, например в неодимовом, активной средой которого является специальный сорт стекла, легированный ионами неодима Nd 3+ , используется четырехуровневая схема накачки. Здесь между метастабильным E 2 и основным уровнем E 0 имеется промежуточный - рабочий уровень E 1 . Вынужденное излучение происходит при переходе атома между уровнями E 2 и E 1 . Преимуществом этой схемы является то, что порог генерации достигается, когда населённость метастабильного уровня становится больше населённости рабочего уровня, которая незначительна в состоянии термодинамического равновесия, поскольку последний находится достаточно далеко от основного уровня. Это значительно снижает требования к источнику накачки. Кроме того, подобная схема позволяет создавать мощные лазеры, работающие в непрерывном режиме, что очень важно для некоторых применений.

Оптический резонатор

В ширину спектральной линии , изображённой на рисунке зелёным цветом, укладывается три собственных частоты резонатора . В этом случае генерируемое лазером излучение будет трехмодовым . Для фиолетовой линии излучение будет чисто монохроматическим .

Зеркала лазера не только обеспечивают существование положительной обратной связи, но и работают как резонатор, усиливая одни генерируемые лазером моды, соответствующие стоячим волнам данного резонатора, и ослабляя другие. Если на оптической длинеL резонатора укладывается целое (в смысле «не дробное») число полуволн n :

то такие волны, проходя по резонатору не меняют своей фазы и вследствие интерференции усиливают друг друга. Все остальные, близко расположенные волны, постепенно гасят друг друга. Таким образом спектр собственных частот оптического резонатора определяется соотношением:

здесь c - скорость света в вакууме. Интервалы между соседними частотами резонатора одинаковы и равны:

Линии в спектре излучения в силу различных причин (доплеровское уширение, внешние электрические и магнитное поля, квантовомеханическое эффекты и др.) всегда имеют определённую ширину . Поэтому могут возникать ситуации, когда на ширину спектральной линии укладывается несколько собственных частот резонатора. В этом случае излучение лазера будет многомодовым. Синхронизация этих мод позволяет добиться того, чтобы излучение представляло собой последовательность коротких и мощных импульсов. Если же , то в излучении лазера будет присутствовать только одна частота, в данном случае резонансные свойства системы зеркал слабо выражены на фоне резонансных свойств спектральной линии. При более строгом расчёте необходимо учитывать, что усиливаются волны, распространяющиеся не только параллельно оптической оси резонатора, но и под малым углом к ней. Условие усиления тогда принимает вид:

Это приводит к тому, что интенсивность пучка лучей лазера различна в разных точках плоскости, перпендикулярной этому пучку. Здесь наблюдается система светлых пятен, разделённых тёмными узловыми линиями. Для устранения этих нежелательных эффектов используют различные диафрагмы, рассеивающие нити, а также применяют различные схемы оптических резонаторов.

2.2 Классификация лазеров:

· Твердотельные лазеры на люминесцирующихтвёрдых средах (диэлектрическиекристаллы и стёкла). В качестве активаторов обычно используются ионыредкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырехуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах.

· Полупроводниковые лазеры. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки (инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами), а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии. Полупроводниковые лазеры - наиболее употребительный в быту вид лазеров. Кроме этого применяются в спектроскопии, в системах накачки других лазеров, а также в медицине (см. фотодинамическая терапия).

· Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектроворганических красителей. Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний. Накачка оптическая, могут работать в непрерывном и импульсном режимах. Основной особенностью является возможность перестройки длины волны излучения в широком диапазоне. Применяются в спектроскопических исследованиях.

· Газовые лазеры - лазеры, активной средой которых является смесь газов и паров. Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах. В зависимости от системы накачки газовые лазеры разделяют на газоразрядные лазеры, газовые лазеры с оптическим возбуждением и возбуждением заряженными частицами (например, лазеры с ядерной накачкой, в начале 80-х проводились испытания систем противоракетной обороны на их основе, однако, без особого успеха), газодинамические и химические лазеры. По типу лазерных переходов различают газовые лазеры на атомных переходах, ионные лазеры, молекулярные лазеры на электронных, колебательных и вращательных переходах молекул и эксимерные лазеры.

· Газодинамические лазеры - газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N 2 +CO 2 +He или N 2 +CO 2 +Н 2 О, рабочее вещество - CO 2).

· Эксимерные лазеры - разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул (димерахблагородных газов, а также их моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров, фактически представляющих из себя среду с инверсией населённостей. Эксимерные лазеры отличаются высокими энергетическими характеристикам, малым разбросом длины волны генерации и возможности её плавной перестройки в широком диапазоне.

· Химические лазеры - разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды (смеси газов). Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции. Для осуществления химических реакций в среде необходимо постоянное присутствие свободных радикалов, для чего используются различные способы воздействия на молекулы для их диссоциации. Отличаются широким спектром генерации в ближней ИК-области, большой мощностью непрерывного и импульсного излучения.

· Лазеры на свободных электронах - лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнитном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты генерации. Различают убитроны и скаттроны, накачка первых осуществляется в пространственно-периодическом статическом поле ондулятора, вторых - мощным полем электромагнитной волны. Существуют также мазеры на циклотронном резонансе и строфотроны, основанные на тормозном излучении электронов, а также флиматроны, использующие эффект черенковского и переходного излучений. Поскольку каждый электрон излучает до 10 8 фотонов, лазеры на свободных электронах являются, по сути, классическими приборами и описываются законами классической электродинамики.

· Квантовые каскадные лазеры − полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне. В отличие от обычных полупроводниковых лазеров, которые излучают посредством вынужденных переходов между разрешенными электронными и дырочными уровнями, разделенными запрещенной зонойполупроводника, излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии.

· Другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры, гамма-лазеры и др.).

3. Лазеры в медицине

С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза - это точечная контактная сварка; лазерный скальпель - автогенная резка; сваривание костей - стыковая сварка плавлением; соединение мышечной ткани - тоже контактная сварка. Для того чтобы лазерное излучение оказало какое-либо действие, надо, чтобы ткань его поглощала. Самый популярный лазер в хирургии - углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические ткани с вполне определенной окраской. Например, луч аргонового лазера свободно проходит через матовое стекловидное тело и отдает свою энергию сетчатке, цвет которой близок к красному. Углекислотный лазер пригоден в большинстве случаев, например когда нужно рассечь или приварить друг к другу ткани разного цвета. Однако при этом возникает другая проблема. Ткани насыщены кровью и лимфой, содержат много воды, а излучение лазера в воде теряет энергию. Увеличить энергию лазерного луча можно, но это может привести к прожигу тканей. Создателям хирургических лазеров приходится прибегать к всевозможным уловкам, что сильно удорожает аппаратуру. Специалистам по сварке металлов давно известно, что при резке пакета тонких металлических листов необходимо, чтобы они плотно прилегали друг к другу, а при точечной контактной сварке для тесного контакта свариваемых деталей необходимо дополнительное давление. Этот метод был использован и в хирургии: профессор О. И. Скобелкин и его соавторы предложили при сварке тканей слегка их сдавливать, чтобы вытеснить кровь. Для осуществления нового способа был создан целый набор инструментов, который применяется сегодня в желудочно-кишечной хирургии, при операциях на желчных путях, селезенке, печени, легких.

3.1 Стоматология

Анализ литературных данных по лечению заболеваний слизистой оболочки рта и пародонта показывает, что некоторые средства, особенно антибиотики и стероидные препараты, изменяют окислительно-восстановительный потенциал слюны, ослабляют активность лизоцима, способствуют развитию аллергических реакций, обусловливают снижение резистентности организма к патогенным воздействиям. Все это затрудняет течение и лечение патологического процесса в слизистой оболочке рта и пародонте. Эти факторы вызывают необходимость изыскания новых методов лечения – без применения лекарственных средств. Одним из них является физиотерапия, а среди наиболее эффективных – низкоинтенсивное лазерное излучение. Лазерное излучение достоверно повышает пролиферативную активность клеток в 1,3-3,5 раза. Было установлено, что НИЛИ оказывает на травматический дефект слизистой оболочки рта противовоспалительное действие, способствует ускорению эпителизации и органоспецифическому восстановлению тканей слизистой оболочки а области дефекта. Такой эффект, в первую очередь, обусловлен интенсификацией синтеза ДНК клетках. Установлено, что в момент облучения интенсивность кровоснабжения возрастает на 20%. Оптимальная вазоконстрикторная доза облучения составляла 100 мВт/см 2 (для ГНЛ) при экспозиции 2 мин (12 Дж/см 2) [. Александров М.Т, Прохончуков А.А., 1981]. С развитием констрикторной реакции некоторые исследователи связывают и аналгезирующий эффект лазерного облучения, наблюдаемый в клинике. В эксперименте на модели посттравматической регенерации слизистой оболочки языка отмечена более быстрая и лучшая эпителизация раны после воздействия светом гелий-неонового лазера (плотность мощности 200 мВт/см 2 при однократном и 1 мВт/см 2 при ежедневном воздействии) [Виноградов А.В. и др.,1990]. Исследования ультраструктуры десны после 1, 3 и 6 сеансов ежедневного облучения светом ГНЛ, показали наличие выраженной реакции со стороны основных элементов десны. В эпителиальных клетках рогового слоя увеличивается количество светлых вакуолей и сильно осмированных глыбок, а в зернистом слое – число осмированных гранул. В мышечных волокнах появляется большое количество митохондрий, в кровеносных сосудах определяются скопления эритроцитов. Все это указывает на усиление синтеза веществ в клетках под влиянием НИЛИ [Зазулевская Л.Я. и др., (1990)]. По итогам проведенных исследований определены спектр действия и параметры для непрерывного излучения с длиной волны 0,63 мкм (лазерная головка КЛО4 для АЛТ «Матрикс»), оказывающие противовоспалительный (сосудистый), стимулирующий клеточную пролиферацию и ингибирующий эффекты. Так, стимуляция клеточной пролиферации наблюдается при плотности мощности от 10 до 100 мВт/см 2 , экспозиции на одно поле от 30 с до 5 мин; противовоспалительное и аналгезирующее действие – при плотности мощности 100-200 мВт/см 2 , экспозиции на одно поле 2-5 мин; ингибирующее действие – при плотности мощности 100-400 мВт/см 2 и экспозиции 1-6 мин. Следует отметить, что указанные величины плотности мощности лазерного излучения достигаются с помощью специальных световодов. Импульсные полупроводниковые лазеры, в частности излучающие головки инфракрасного спектра (ЛО4) к АЛТ «Матрикс», позволяют в большинстве случаев обходиться и без световодов. Когда воздействие проводится на проекцию зоны поражения с применением зеркальных и зеркально-магнитных насадок. Это зачастую эффективнее и не требует таких высоких плотностей мощности. Особенности импульсного инфракрасного (ИК) излучения позволяют реализовать методики лазерной терапии с более высокой эффективностью при значительно меньшей энергетической нагрузке (плотности мощности). Показано, что лазерное импульсное ИК излучение стимулирует процессы пролиферативной активности клеточных структур в дозе от 0,03-0,86 Дж/см 2 с максимальным эффектом при дозе 0,22 Дж/см 2 . Тогда как для ГНЛ (непрерывное излучение красного спектра) максимальный эффект достигается при 3 Дж/см 2 . Применение же в комплексном лечении больных с одонтогенными флегмонами лица сочетанноговоздействия излучениями обоих видов позволяет получить наилучшие результаты лечения, сократить продолжительность нетрудоспособности в среднем на 8 суток [Платонова В.В., 1990]. Импульсное ИК лазерное излучение в сочетании постоянным с магнитным полем 35-50 мТл можно эффективно использовать на всех этапах ортодонтического лечения. Отсутствие осложнений и рецидивов, повышение производительности труда врачей и среднего медицинского персонала в целом дает общий экономический эффект 36-43% [Кузнецова М.А., 2000]. Применение низкоинтенсивного импульсного лазерного света за счет общего (общеоздоровительного) действия расширяет показания для ортодонтического лечения зубочелюстных аномалий:

· при различных неблагоприятных условиях (гингивиты при тесном положении зубов, недостаточной гигиене полости рта, ювенильные, травматические; пародонтиты);

· при выраженных воспалительно-дистрофических осложнениях в пародонте перемещаемых зубов, а также у ослабленных детей с нарушением иммунного статуса (иммунодефициты, аллергические явления, сенсибилизация, гормонально-иммунологические расстройства и т. П.);

· при подготовке к активному ортодонтическому лечению. НИЛИ статистически достоверно позволяет купировать воспалительные процессы в 1,6 раз быстрее (в среднем на 4-6 дней) по сравнению с традиционными способами, что в свою очередь сокращает подготовительный этап в 2,3 раза, создавая оптимальные условия для начала ортодонтического лечения;

· при удалении отдельных постоянных зубов по ортодонтическим показаниям, обнажении коронок ретенированных зубов, пластике уздечки языка и уздечек губ, углублении преддверия полости рта. Применение низкоинтенсивного импульсного ИК НИЛИ в противовоспалительных и стимулирующих регенерацию дозах позволяет ускорить заживление послеоперационных ран мягких тканей полости рта без образования тяжей и рубцовых изменений в среднем на 4-5 дней по сравнению с обычными способами;

· при устранении зубочелюстных аномалий с применением современной несъемной техники лазерная терапия позволяет ликвидировать болевой синдром после фиксации и активирования элементов аппарата, предотвратить возможное ответное травматическое воспаление в области приложения ортодонтических сил, облегчая период физиологической и психологической адаптации к ортодонтическому аппарату и сокращая (в среднем на 6±1,2 месяца по сравнению с обычными способами) общие сроки лечения.

ЛТ, обеспечивая надежную ретенцию, статистически достоверно дает возможность фиксировать в нужном положении перемещенные зубы и сокращать завершающий период лечения (в среднем на 4-6 месяцев), ускоряет прорезывание задержавшихся в челюсти зубов в 4,7 раза без оперативного вмешательства, нередко являющегося методом выбора. Одновременное сочетанное применение низкоинтенсивного импульсного ИК НИЛИ и постоянного магнитного поля существенно повышает профилактическую и лечебную эффективность перемещения зачатков задержавшихся зубов (изменения положения их в челюсти и установление в направлении прорезывания) и ускоряет их прорезывание в 5,3 раза без оперативного вмешательства. Перечисленные свойства лазерного излучения позволяют дифференцированно применять его в стоматологии при заболеваниях слизистой оболочки рта, которые сопровождаются деструкцией эпителия, замедленной регенерацией, воспалением, болевым синдромом, а также при поражениях вирусного генеза (фотодинамическое действие). При воспалении излучение лазера вызывает общий и местный эффекты. Общие эффекты выражаются в увеличении неспецифических гуморальных факторов защиты (комплемент, интерферон, лизоцим), общей лейкоцитарной реакции, стимуляции костномозгового кроветворения, повышении фагоцитарной активности микро- и макрофагальной систем. Возникает десенсибилизирующий эффект, происходят активация иммунокомпетентной системы, клеточной и гуморальной специфической иммунологической защиты, повышение общих защитно-приспособительных реакций организма. Местные эффекты определяются основными элементами воспалительной реакции: экссудация, альтерация, пролиферация. Экссудация: дилатация сосудов, активация микроциркуляции с последующей вазоконстрикцией – предотвращение развития фазовых нарушений микроциркуляции и нормализация кровообращения в сочетании с нормализацией проницаемости сосудистой стенки (сосудисто-тканевого барьера), уменьшение отека ткани. Под влиянием излучения НИЛИ происходит оптимальное формирование нейтрофильного и моноцитарного барьеров, повышение фагоцитарной активности микро- и макрофагов, продукции бактерицидных субстанций и стимуляторов роста, стимуляция пролиферации, активация барьерных свойств слизистой оболочки рта. Альтерация: активация функций митохондрий и других органелл клеток, метаболизма с увеличением потребления кислорода и активацией тканевого дыхания. Одновременно подавляются анаэробные процессы, предотвращается развитие ацидоза и вторичных дистрофических изменений, в итоге облегчается регенерация поврежденных тканей. Пролиферация: стимуляция системы ДНК–РНК–белок, увеличение митотической (пролиферативной) активности клеток, активация реакции соединительной ткани. Морфологически клеточная реакция проявляется в ускорении и усилении образования фибробластического барьера (на фоне выделения стимуляторов роста), стимуляции образования грануляционной ткани, ускорении созревания фибробластов, активации образования коллагеновых волокон и созревания грануляционной ткани. В результате происходят быстрая и более физиологичная эпителизация, ускоренная и полноценная регенерация слизистой оболочки в области поражения. Терапевтическое действие (стимуляция) процессов регенерации ткани выражается в активации системы ДНК–РНК–белок, усилении синтеза нуклеиновых кислот и ядерных белков, возрастании массы ядра, увеличении синтеза цитоплазматических белков и накоплении их в период интерфазы до критического уровня. Происходят стимуляция митозов, ускоренное и увеличенное размножение клеток соединительной ткани, эпителия. Терапевтический эффект лазерного воздействия на ткани живого организма значительно усиливается в постоянном магнитном поле (ПМП) за счет усиления процессов метаболизма. Магнитолазерная терапия (МЛТ) была предложена в конце 70-х гг. и получила наибольшее распространение благодаря высокой терапевтической эффективности, обусловленной потенцированием действия магнитного поля и лазерного излучения [Мостовников В.А. и др., 1991; Полонский А.К. и др., 1981]. При сочетанном магнитолазерном воздействии, особенно при лечении глубоко расположенных патологических очагов, более эффективным является применение НИЛИ ближней инфракрасной части спектра (длина волны 0,8–1,3 мкм) по следующим объективным причинам. Во-первых, максимум пропускания кожными покровами человека электромагнитного излучения находится в этом диапазоне. Во-вторых, ПМП, ориентируя диполи в одну линию вдоль световой волны коллинеарно, способствует резонансному взаимодействию биологических структур и усиливает светопоглощение в ИК диапазоне. Импульсное ИК (λ = 0,89 мкм) лазерное излучение в большей степени влияет на стабильность клеточных мембран, тогда как в комбинации с ПМП этот фактор оказывает выраженное действие на микроциркуляторные процессы [Зубкова С.М. и др., 1991]. При проведении МЛТ применяют специальные магнитные насадки с оптимальной формой поля, что освобождает врача от необходимости учета специфического действия северного и южного полюсов магнита. Оптимальное время МЛТ составляет 1,5–2 мин при ПМП 15–75 мТл и мощности импульсного ИК НИЛИ 10–15 Вт; число процедур от 5 до 10. Для стимуляции периферического кровотока оптимальным является ПМП с индукцией 50 мТл. МЛТ оказывает гипокоагулирующее, мягкое седативное и гипотензивное действие, положительно влияет на отдельные компоненты иммунной системы [Буйлин В.А., 1997; Москвин С.В., Буйлин В.А., 2005]. Показания к лазеротерапии: пародонтит в стадии обострения, пародонтоз (гиперестезия), герпес губ и герпетический стоматит взрослых, синдром Мелькерссона-Розенталя, хронический рецидивирующий афтозный стоматит, десквамативный глоссит, хронический гингивит, язвенный гингивит, травматические повреждения слизистой оболочки рта, многоформная экссудативная эритема и др. Противопоказания: все формы лейкоплакии, а также явления пролиферативного характера на слизистой оболочке рта (папилломатоз, ограниченный гиперкератоз, ромбовидный глоссит); тяжело протекающие заболевания сердечно-сосудистой системы (атеросклеротический кардиосклероз с выраженным нарушением коронарного кровообращения, церебральный склероз с нарушением мозгового кровообращения II–Ш стадии), гипертоническая болезнь III стадии, гипотония; выраженная и тяжелая степень эмфиземы легких; туберкулезная интоксикация; опухоли злокачественные; доброкачественные опухоли при локализации в области головы и шеи; тяжелая степень сахарного диабета в некомпенсированном состоянии или при неустойчивой компенсации; заболевания крови; состояние после инфаркта миокарда (в течение 6 мес после эксцесса).

3.2 Хирургия

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.
Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют? Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани.

В ЛАЗЕРНОЙ ХИРУРГИИ

Применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных видов хирургических лазеров, работающих на разных лазерных активных средах. Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами. Хирургические лазерные системы обеспечивают: эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

  • сухое операционное поле;
  • минимальное повреждение окружающих тканей;
  • эффективный гемо- и аэростаз;
  • купирование лимфатических протоков;
  • высокую стерильность и абластичность;
  • совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств в урологии, гинекологии, оториноларингологии, ортопедии, нейрохирургии и т. д. По нашему убеждению, наилучшим выбором для хирурга по своим физическим свойствам является гольмиевый лазер. Поэтому основное внимание мы уделяем именно Гольмиевым лазерам в хирургии.

КТР - лазер

Это хорошо известный неодимовый лазер на гранате (Nd:YAG), спаренный с нелинейным кристаллом титанил фосфата калия (КТР), который удваивает частоту излучаемого света до получения длины волны 532 нм, расположенной в зеленой области спектра. Лазерное лечение сосудистых нарушений основано на тепловом воздействии лазерного излучения на сосуды без изменения структуры прилегающих тканей. Зеленое излучение КТР-лазера проникает сквозь поверхностные слои кожи и хорошо поглощается гемоглобином крови. В результате в поврежденном кровеносном сосуде происходит выделение большого количества тепла, кровь свертывается, а внутренняя стенка разрушается. В дальнейшем патологический сосуд зарастает соединительной тканью, а кожа обретает естественный цвет. На практике при этом важно учитывать время тепловой релаксации сосуда, которое соответствует периоду, необходимому для передачи тепла за пределы сосуда. Это время зависит, прежде всего, от диаметра сосуда и может изменяться от 1 мс (для сосуда диаметром 50 мкм) до 80 мс (для сосуда диаметром 400 мкм). При облучении слишком короткими импульсами очень интенсивным лазером кровеносный сосуд поглощает достаточно большое количество энергии, которая не успевает рассеиваться. Из-за этого внутри сосуда значительно повышаются температура и давление, что приводит к разрыву его стенки и к микрокровоизлиянию. Клинически это проявляется в виде пурпуры или микрогеморрагий. С увеличением длительности лазерного импульса можно получить режим селективной коагуляции, когда при постепенном повышении температуры стенки сосуда происходит его спаивание и исчезновение. Длительность импульса при этом должна быть больше, чем время релаксации сосуда, но ограниченной, иначе большое количество тепла напрасно рассеивается наружу, и в обширной зоне окружающей дермы могут произойти значительные изменения. На месте лазерного воздействия восстанавливается естественный цвет кожного покрова. Ткани вокруг сосуда практически не поглощают излучение лазера и остаются неповрежденными, поэтому после операции не происходит образования рубцов.

3.4 Фотоомоложение кожи

При поглощении излучения КТР-лазера гемоглобином крови помимо фотокоагуляции кровеносных сосудов и очищения кожи от пигментных и васкулярных поражений можно получить и другой эффект - фотоомоложение кожи. Фотоомоложение - это видимое улучшение состояния кожи при помощи лазера или другого источника света. Что происходит непосредственно в коже при облучении ее мощными световыми импульсами? При поглощении света и нагревании стенок сосудов те в свою очередь передают тепло наружу. Селективное нагревание дермального коллагена (до температуры 55 град. С) вызывает стимуляцию в соединительной ткани особых клеток - фибробластов, которые начинают активно синтезировать новый коллаген. Таким образом, в увядающей коже возникают новые волокна коллагена и эластина, и она вновь обретает молодой, свежий вид. Синтез нового коллагена это биохимический процесс, требующий определенного времени, поэтому результат становится заметным не сразу. Всего может потребоваться 3 - 6 сеансов с интервалом в 3 недели. После курса процедур происходит улучшение цвета и структуры кожи, лицо подтягивается, улучшаются его контуры, сужаются поры. Благодаря общему лифтингу разглаживаются мелкие и средние морщины. Таким образом, фотоомоложение с помощью КТР-лазера - это новый и эффективный неинвазивный метод омоложения кожи с минимальным риском и без длительного периода восстановления для пациента.

Лазерная дермабразия - это:

  • малая травматичность проводимых операций;
  • минимальное тепловое повреждение и быстрое восстановление кожного покрова;
  • минимальный риск послеоперационных рецидивов и осложнений;
  • быстрое заживление ран

Механизм действия пилинга

Основан на способности кожи к быстрому самовосстановлению. Любое травмирующее воздействие - ожог, ссадина, порез - вызывает незамедлительную реакцию организма. При малейшей травме на защиту бросаются все силы - начинается процесс регенерации. Однако при восстановлении кожного покрова старые материалы не используются. Дело в том, что при травме происходит уничтожение деформированных клеток, а деятельность молодых и здоровых поощряется как никогда. Конечно, помимо регенерации в коже непрерывно протекают и другие процессы обновления. Это, например, программа деятельности кератиноцитов - основных клеток эпидермиса. По сути эпидермис состоит из слоев кератиноцитов разного возраста. И каждый слой выполняет свою физиологическую задачу (скажем, самый верхний роговой - это плотный защитный барьер из отмерших клеток). С годами в жизненной программе кератиноцитов могут начаться сбои, тогда клетки вместе с накопленными повреждениями задерживаются в промежуточном слое. Исходящий от них негатив (как инфекционные болезни) неминуемо сказывается на деятельности других клеток.
В результате замедляется клеточное деление в живых тканях (они истончаются), а роговой слой, наоборот, утолщается, придавая коже вид пергамента. В этой ситуации пилинг также сослужит хорошую службу, одновременно создавая предпосылки к тщательному очищению верхнего барьера и способствуя проведению контролируемого процесса обновления. Вызываемое отшелушивание кожи как искусственное повреждение эпидермиса, проводится по избирательно-бережным методикам, без боли и дискомфорта. Если регенерация происходит нормально, то кожа после реабилитации выглядит гораздо лучше. Ороговевший слой становится более тонким и однородным, а дерма упругой.

3.5 Удаление татуировок и пигментных пятен

Татуировки обычно легче сделать, чем удалить. Мода на татуировки прошла через многие страны. До 20 миллионов американцев имеют сейчас многоцветные украшения на различных частях тела, и опросы показывают, что по крайней мере половина из них хотят избавиться от этого легкомысленного поступка в молодости. Наша страна не испытала пока повального увлечения татуировкой, но не следует игнорировать опыт других. Существует много способов удаления красящего вещества из кожи, основанных на различных механизмах деструктивного воздействия. Все эти методы были основаны на одном принципе - удалении участков кожи с татуировкой: дермабразия кожи с помощью алмазной фрезы, хирургические иссечения, химическое удаление изображения путем инъекции специальных кислот, криохирургия. Однако косметический результат после такого удаления оставляет желать лучшего: слишком высока вероятность появления эстетически неприемлемых рубцов, которые могут оказаться еще более нежелательными, чем сама татуировка.

Лазерное удаление татуировок

За последние годы существенный прогресс приобрел метод лазерного выведения татуировок. За это время был получен огромный клинический материал, а лазерные методы стали наиболее продвинутыми, если не единственно приемлемыми с точки зрения получаемого косметического результата, способами выведения татуировок. Для разрушения красителей, составляющих основу татуировки, лазер должен излучать такой свет, который поглощается данным красителем. Для этого используется специальный режим работы лазера "с модуляцией добротности" (Q-switched), который позволяет добиться высокой мощности лазерных импульсов за счет укорочения их длительности. Для вывода излучения в таких лазерах используется шарнирный зеркальный световод, позволяющий доставить лазерное излучение к рабочему инструменту врача. Гранулы красителей тату избирательно поглощают лазерное излучение, разбиваются на мелкие фрагменты и постепенно выводятся через лимфатическую систему. По сравнению с другими методами лазерное удаление татуировок является более безопасным методом, так как лазерное излучение воздействует только на краситель, а не на окружающую кожу. Лазер позволяет выводить татуировки без рубцов и шрамов. Для полного выведения большинства татуировок и дермальных пигментаций требуется проведение 2 - 5 сеансов. Для выведения больших по площади татуировок может потребоваться более 10 сеансов. Количество сеансов зависит от нескольких факторов, таких как возраст татуировки, ее размеры и расположение, глубина, тип и цвет пигмента. Трудны для выведения зеленые и желтые татуировки. Обычно профессионально выполненные татуировки требуют больше сеансов по их удалению, чем любительские. Встречаются такие стойкие виды красителей, которые остаются видными после серии процедур, хотя и значительно обесцвечиваются.

3.6 Применение лазера в лечении ЛОР-заболеваний

В настоящее время лазерное излучение все чаще и чаще находит применение в медицине, в том числе и влечении ЛОР-заболеваний. Положительные характеристики применения лазера состоят в том, что он уменьшает воспалительную реакцию, обладает выраженным анальгезирующим (обезболивающим) эффектом, а также при этом происходит более активное восстановление пораженной ткани. Применяемые в медицине режимы лазерного излучения не оказывают вредного влияния на организм в целом. Разрушение тканей лазером практически бескровно, что связано с коагуляцией (свертыванием) крови в просвете капилляров в зоне коагуляционного некроза и образованием так называемого лазерного тромба. Среди патологических состояний глотки, требующих лазерной коррекции наибольший интерес представляют различные новообразования, хронический гипертрофический боковой и гранулезный фарингит (воспаление глотки), остатки небных миндалин после перенесенной ранее тонзиллэктомии (удаления гланд) и ронхопатия.

Применение лазера для лечения патологии глотки значительно эффективнее традиционных методов хирургии:

  • вмешательство не дает осложнений в послеоперационном периоде,
  • оно легко переносится больными,
  • является максимально щадящим к тканям,
  • не требует проведения антибактериальной и противовоспалительной терапии в послеоперационном периоде,
  • не нарушает трудоспособность больных.

Для эндоскопической коррекции патологии полости носа широко применяется диодный лазер. Он успешно используется для лечения таких заболеваний, как:

  • хронический гипертрофический ринит, особенно при увеличении средних и задних концов носовых раковин,
  • рубцовые процессы полости носа после перенесенных ранее хирургических вмешательств и травм,
  • полипозный этмоидит (воспаление решетчатой пазухи, сочетающееся наличием в ее полости полипов),
  • рецидивирующий полипоз носа,
  • рецидивирующие носовые кровотечения,
  • новообразования.

Довольно широкое распространение в последнее время получила лазерная хирургия гортани. Лазер помогает справиться с такой патологией, как различные доброкачественные и злокачественные новообразования гортани, последствия хронических воспалительных заболеваний гортани, а также различные формы нарушения иннервации ее, т.е. параличи и парезы. Грануляции или рубцовые ткани гортани полностью "выпариваются" лазером. При этом для визуального контроля за процессом лазерной хирургии используется эндоскопическая техника. После такой операции, как трахеотомия, а также такой манипуляции, как интубация трахеи, при длительном нахождении канюли или интубационной трубки в гортани на ее поверхности может образоваться так называемая гранулема. Лечение постинтубационных и посттрахеотомических гранулем гортани и трахеи с помощью лазера также весьма эффективно, так как. в большинстве случаев позволяет полностью восстановить просвет дыхательных путей.

Весьма успешно применение лазерной хирургии в лечении таких заболеваний уха, как:

  • новообразования,
  • посттравматические деформации,
  • хронический гнойный средней отит.

В хирургии ЛОР-болезней имеется большое количество методов и способов коррекции гиперпластических процессов, которые характеризуются разрастанием патологический ткани, а также сужений и различных дефектов наружного и среднего уха. Лазерная хирургия широко применяется и для лечения этой патологии. В области наружного слухового прохода наиболее часто встречаются папилломы и гемангиомы, которые легко удаляются лазером. Этим же методом лазерной хирургии проводится удаление полипов и грануляций (разрастаний соединительной ткани) из полости среднего уха с большими дефектами барабанной перепонки при таком заболевании, как хронический гнойный средний отит. Особое место в хирургии гиперпластических процессов наружного уха занимают келлоидные рубцы ушных раковин. Традиционная хирургия не способна полностью решить эту проблему. При этом отмечается большое число рецидивов. Введение в практику лазерной хирургии лечение келлоидных рубцов стало более эффективным. С помощью лазера и операционного микроскопа во многих случаях удается очень экономно иссечь келлоидный рубец с неплохим косметическим эффектом. При этом риск рецидива в послеоперационном периоде низок. Весьма ценным эндоскопические вмешательства с применением лазера оказываются при микрохирургических операциях в барабанной полости, когда необходимо с большой точностью удалять микроскопические участки патологических тканей, не разрушая при этом целостности тонких анатомических структур среднего и внутреннего уха. Некоторые из нас страдают от постоянного покраснения глаз (когда видны красные вены), даже если Вы хорошо выспались! Некоторые пытаются применить различные медицинские препараты, но безуспешно. Причем, мы уверены, что сами покраснения не вызваны сухостью глаз либо аллергической реакцией на какой-то продукт. Что говорят по этому поводу ведущие офтальмологи...

3.7 Офтальмология

Во-первых, всем необходимо знать, что если видны красные венки в глазу - это вполне нормальное явление, и из этого ненужно делать трагедию! Некоторые, как только видят красные венки, пытаются применять различные препараты, которые "обещают" справиться с данной проблемой, и забывают проконсультироваться с врачом. Но как утверждают специалисты, применение некоторых препаратов (к примеру, известный всем Visin) которые уменьшают венки, делают их менее заметными, способно привести к совершенно обратному результату: по завершению применения препарата вены могут еще больше расшириться и стать более заметными. Расширение вен - это вечная проблема, с которой сталкиваются люди, которые постоянно применяют (злоупотребляют!) какие-то глазные медицинские препараты. Причины постоянной красноты глаз: Хроническая краснота глаз может быть вызвана определенным видом раздражения. Наиболее часто покраснение глаз вызывает их сухость и аллергия. Сухость глаз не всегда способна вызывать их покраснение. Кроме того, с сухостью глаз (на ранней и средней стадии) отлично справляются специальные капли против сухости глаз. Для людей, страдающих от тяжелой формы сухости глаз, в клинике предлагают специальную процедуру (пунктационная обтурация). При данной процедуре, небольшая пластиковая "пробка", напоминающая миниатюрную метку для мяча в гольфе, помещается в одни из двух каналов, который проходит от глаза к носу. Эта перегородка препятствует попаданию слезы в нос, тем самым, задерживая ее дольше в самом глазу. Аллергия - еще одна типичная причина красноты глаз. Самое оптимальное лечение красноты глаз аллергического происхождения - содержать пациента в таких условиях, где бы не было предметов, способных вызвать аллергию. Однако, как известно, порой бывает очень сложно определить, чем же вызвана аллергия. Порой аллергию могут спровоцировать линзы, которые Вы носите. На рынке имеются медицинские препараты, которые снижают некоторые аллергические реакции. Если краснота вызвана линзами, то на сегодняшний день есть такая услуга как лечение лазером. В итоге, зрение практически полностью восстанавливается, и отпадает всякая необходимость в использовании линз либо очков. Краснота глаз может быть также вызвана большой нагрузкой на глаза, просиживанием часами у компьютера, нехваткой витамина А. В любом случае, перед тем как принять те или иные капли, снимающие красноту глаз, следует непременно проконсультироваться с врачом, пройти обследование и лишь затем отправляться в аптеку за медикаментами.

4. Заключение

Свет использовался для лечения разнообразных болезней испокон веков. Недаром Эскулап – бог медицины – был сыном бога света Феба Аполлона. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик. В наше время лазер важный прибор, без которого мы непредставляем своей жизни. Наука развивается широкими шагами. Нам надо только следить за ее успехами и применять достижения в повседневной жизни. Одно из главный новшеств в медицине, связано с лазерами. Ведь теперь с их помощью можно проводить операции без больших разрезов, без боязни занести инфекцию. Такой вид лечения позволит больным принимать меньше таблеток и препаратов, что позволит уменьшить нагрузку на их печень и почки. В конце я бы хотел сказать, что у меня есть надежда, что в будущем, если мне понадобится медицинская помощь, то она будет оказываться с помощью лазера.

Список литературы:

1.Бруннер В. Справочник по лазерной технике: Пер. с нем. . - М.: Энергоатомиздат, 1991
2.Звелто О. Принципы лазеров . - М.: Мир, 1990

3.Тарасов Л.В. Физика процессов в генераторах когерентного оптического излучения . - М.: Радио и связь, 1981

ВВЕДЕНИЕ

Основными инструментами, которые применяет хирург для диссекции тканей, являются скальпель и ножницы, т. е. режущие инструменты. Однако раны и разрезы, производимые скальпелем и ножницами, сопровождаются кровотечением, требующим применения специальных мер гемостаза. Кроме того, при контакте с тканями режущие инструменты могут распространять микрофлору и клетки злокачественных опухолей вдоль линии разреза. В связи с этим с давних пор хирурги мечтали иметь в своем распоряжении такой инструмент, который производил бы бескровный разрез, одновременно уничтожая патогенную микрофлору и опухолевые клетки в операционной ране. Вмешательства на «сухом операционном поле» являются идеалом для хирургов любого профиля.

Попытки создать «идеальный» скальпель относятся к концу прошлого века, когда был сконструирован так называемый электронож, работающий с использованием токов высокой частоты. Этот прибор в более совершенных вариантах в настоящее время применяют довольно широко хирурги различных специальностей. Однако по мере накопления опыта выявлены отрицательные стороны «электрохирургии», основной из которых является слишком большая зона термического ожога тканей в области проведения разреза. Известно, что чем шире зона ожога, тем хуже заживает хирургическая рана. Кроме того, при использовании электроножа возникает необходимость включения тела больного в электрическую цепь. Электрохирургические аппараты отрицательно влияют на работу электронных приборов и устройств слежения за жизнедеятельностью организма во время операции. Криохирургические аппараты также вызывают значительное повреждение тканей, ухудшающее процесс заживления. Скорость рассечения тканей криоскальпелем очень низка. Фактически при этом происходит не рассечение, а деструкция тканей. Значительную зону ожога наблюдают и при использовании плазменного скальпеля. Если принять во внимание, что луч лазера обладает выраженными гемостатическими свойствами, а также способностью герметизировать бронхиолы, желчевыводящие протоки и протоки поджелудочной железы, то применение лазерной техники в хирургии становится исключительно перспективным. Кратко перечисленные некоторые достоинства применения лазеров в хирургии относятся прежде всего к лазерам на углекислом газе (С0 2 -лазерам). Кроме них, в медицине применяют лазеры, работающие на других принципах и на других рабочих веществах. Эти лазеры обладают принципиально другими качествами при воздействии на биологические ткани и применяющих по сравнительно узким показаниям, в частности в сердечно-сосудистой хирургии, в онкологии, для лечения хирургических заболеваний кожи и видимых слизистых оболочек и др.

ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Несмотря на общую природу световых и радиоволн, многие годы оптика и радиоэлектроника развивались самостоятельно, независимо друг от друга. Казалось, что источники света -- возбужденные частицы и генераторы радиоволн -- имеют мало общего. Лишь с середины XX столетия появились работы по созданию молекулярных усилителей и генераторов радиоволн, которые положили начало новой самостоятельной области физики -- квантовой электронике.

Квантовая электроника изучает методы усиления и генерации электромагнитных колебаний с использованием вынужденного излучения квантовых систем. Достижения в этой области знаний находят все большее применение в науке и технике. Ознакомимся с некоторыми явлениями, лежащими в основе квантовой электроники и работы оптических квантовых генераторов -- лазеров.

Лазеры представляют собой источники света, работающие на базе процесса вынужденного (стимулированного, индуцированного) испускания фотонов возбужденными атомами или молекулами под воздействием фотонов излучения, имеющих ту же частоту. Отличительной чертой этого процесса является то, что фотон, возникающий при вынужденном испускании, идентичен вызвавшему его появление внешнему фотону по частоте, фазе, направлению и поляризации. Это определяет уникальные свойства квантовых генераторов: высокая когерентность излучения в пространстве и во времени, высокая монохроматичность, узкая направленность пучка излучения, огромная концентрация потока мощности и способность фокусироваться в очень малые объемы. Лазеры создаются на базе различных активных сред: газообразной, жидкой или твердой. Они могут давать излучение в весьма широком диапазоне длин волн - от 100 нм (ультрафиолетовый свет) до 1.2 мкм (инфракрасное излучение) - и могут работать как в непрерывном, так и в импульсном режимах.

Лазер состоит из трех принципиально важных узлов: излучателя, системы накачки и источника питания, работа которых обеспечивается с помощью специальных вспомогательных устройств.

Излучатель предназначен для преобразования энергии накачки (перевода гелий-неоновой смеси 3 в активное состояние) в лазерное излучение и содержит оптический резонатор, представляющий собой в общем случае систему тщательно изготовленных отражающих, преломляющих и фокусирующих элементов, во внутреннем пространстве которого возбуждается и поддерживается определенный тип электромагнитных колебаний оптического диапазона. Оптический резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки.

Создание лазеров оказалось возможным в результате реализации трех фундаментальных физических идей: вынужденного излучения, создания термодинамически неравновесной инверсной населенности энергетических уровней атомов и использования положительной обратной связи.

Возбужденные молекулы (атомы) способны излучать фотоны люминесценции. Такое излучение является спонтанным процессом. Оно случайно и хаотично по времени, частоте (могут быть переходы между разными уровнями), по направлению распространения и поляризации. Другое излучение -- вынужденное, или индуцированное -- возникает при взаимодействии фотона с возбужденной молекулой, если энергия фотона равна разности соответствующих уровней энергии. При вынужденном (индуцированном) излучении число переходов, совершаемых в секунду, зависит от числа фотонов, попадающих в вещество за это же время, т. е. от интенсивности света, а также от числа возбужденных молекул. Другими словами, число вынужденных переходов будет тем больше, чем выше населенность соответствующих возбужденных энергетических состояний.

Индуцированное излучение тождественно падающему во всех отношениях, в том числе и по фазе, поэтому можно говорить о когерентном усилении электромагнитной волны, что используется в качестве первой основополагающей идеи в принципах лазерной генерации.

Вторая идея, реализуемая при создании лазеров, заключается в создании термодинамически неравновесных систем, в которых вопреки закону Больцмана, на более высоком уровне находится больше частиц, чем на более низком. Состояние среды, в котором хотя бы для двух энергетических уровней оказывается, что число частиц с большей энергией превосходит число частиц с меньше энергией, называется состоянием с инверсной населенностью уровней, а среда -- активной. Именно активная среда, в которой фотоны взаимодействуют с возбужденными атомами, вызывая их вынужденные переходы на более низкий уровень с испускание квантов индуцированного (вынужденного) излучения, является рабочим веществом лазера. Состояние с инверсной населенностью, уровней формально получается из распределения Больцмана для Т < О К, поэтому иногда называется состоянием с «отрицательной» температурой. По мере распространения света в активной сред интенсивность его возрастает, имеет место явление, обратное поглощению, т. е. усиление света. Это означает, что в законе Бугера kX < 0, поэтому инверсная населенность соответствует среде с отрицательным показателем поглощения.

Состояние с инверсной населенностью можно создать, отбирая частицы с меньшей энергией или специально возбуждая частицы, например, светом или электрическим разрядом. Само по себе состояние с отрицательной температурой долго не существует.

Третья идея, используемая в принципах лазерной генерации, возникла в радиофизике и заключается в использовании положительной обратной связи. При ее осуществлении часть генерируемого вынужденного излучения остается внутри рабочего вещества и вызывает вынужденное излучение все новыми и новыми возбужденными атомами. Для реализации такого процесса активную среду помещают в оптический резонатор, состоящий обычно из двух зеркал, подобранных так, чтобы возникающее в нем излучение многократно проходило через активную среду, превращая ее в генератор когерентного вынужденного излучения.

Первый такой генератор в диапазоне СВЧ (мазер) был сконструирован в 1955 г. независимо советскими учеными Н. Г. Басоиым и А. М. Прохоровым и американскими -- Ч. Таунсом и др.. Так как работа этого прибора была основана на вынужденном излучении молекул аммиака, то генератор был назван молекулярным.

В 1960 г. был создан первый квантовый генератор видимого диапазона излучения -- лазер с кристаллом рубина в качестве рабочего вещества (активной среды). В том же году был создан газовый гелий-неоновый лазер. Все огромное многообразие созданных в настоящее время лазеров можно классифицировать по видам рабочего вещества: различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В зависимости от типа лазера энергия для создания инверсной населенности сообщается разными способами: возбуждение очень интенсивным светом -- «оптическая накачка», электрическим газовым разрядом, в полупроводниковых лазерах -- электрическим током. По характеру свечения лазеры подразделяют на импульсные и непрерывные.

Рассмотрим принцип работы твердотельного рубинового лазера. Рубин -- это кристалл окиси алюминия Аl 2 0 3 , содержащий в виде примеси примерно 0,05% ионов хрома Сг 3+ . Возбуждение ионов хрома осуществляют методом оптической накачки с помощью импульсных источников света большой мощности. В одной из конструкций применяют трубчатый отражатель, имеющий в сечении форму эллипса. Внутри отражателя помещены прямая ксеноновая импульсная лампа и рубиновый стержень, расположенные вдоль линий, проходящих через фокусы эллипса (рис. 1). Внутренняя поверхность алюминиевого отражателя хорошо отполирована или посеребрена. Основное свойство эллиптического отражателя заключается в том, что свет, вышедший из одного его фокуса (ксеноновой лампы) и отраженный от стенок, попадает в другой фокус отражателя (рубиновый стержень).

Рубиновый лазер работает по трехуровневой схеме (рис. 2 а). В результате оптической накачки ионы хрома переходят с основного уровня 1 в короткоживущее возбужденное состояние З. Затем происходит безызлучательный переход в долгоживущее (метастабильное) состояние 2, с которого вероятность спонтанного излучательного перехода относительно мала. Поэтому происходит накопление возбужденных ионов в состоянии 2 и создается инверсная населенность между уровнями 1 и 2. В обычных условиях переход со 2-го на 1-й уровень происходит спонтанно и сопровождается люминесценцией с длиной волны 694,3 нм. В резонаторе лазера есть два зеркала (см. рис. 1), одно из которых имеет коэффициент отражения R интенсивности отраженного и падающего на зеркало света), другое зеркало полупрозрачное и пропускает часть падающего на него излучения {R < 100%). Кванты люминесценции в зависимости от направления их движения либо вылетают из боковой поверхности рубинового стержня и теряются, либо, многократно отражаясь от зеркал, сами вызывают вынужденные переходы. Таким образом, пучок, перпендикулярный зеркалам, будет иметь наибольшее развитие и выходит наружу через полупрозрачное зеркало. Такой лазер работает в импульсном режиме.

Наряду с рубиновым лазером, работающим по трехуровневой схеме, широкое распространение получили четырехуровневые схемы лазеров на ионах редкоземельных элементов (неодим, самарий и др.), внедренных в кристаллическую или стеклянную матрицы (рис. 24, б). В таких случаях инверсная населенность создается между двумя возбужденными уровнями: долгоживущий уровнем 2 и короткоживущим уровнем 2".

Очень распространенным газовым лазером является гелий-неоновый, возбуждение в котором возникает при электрическом разряде. Активной средой в нем служит смесь гелия и неона в соотношении 10:1 и давлении около 150 Па. Излучающими являются атомы неона, атомы гелия играют вспомогательную роль. На рис. 24, в показаны энергетические уровни атомов гелия и неона. Генерация происходит при переходе между 3 и 2 уровнями неона. Для того чтобы создать между ними инверсную населенность, необходимо заселить уровень 3 и опустошить уровень 2. Заселение уровня 3 происходит с помощью атомов гелия. При электрическом разряде электронным ударом происходит возбуждение атомов гелия в долгоживущее состояние (со временем жизни около 10 3 с). Энергия этого состояния очень близка к энергии уровня 3 неона, поэтому при соударении возбужденного атома гелия с невозбужденным атомом неона происходит передача энергии, в результате чего заселяется уровень 3 неона. Для чистого неона время жизни на этом уровне мало и атомы переходят на уровни 1 или 2, реализуется больцмановское распределение. Опустошение уровня 2 неона происходит в основном за счет спонтанного перехода его атомов в основное состояние при соударениях со стенками разрядной трубки. Так обеспечивается стационарная инверсная населенность уровней 2 и 3 неона.

Основным конструктивным элементом гелий-неонового лазер - (рис. 3) является газоразрядная трубка диаметром около 7 мм. В трубку вмонтированы электроды для создания газового разряда и возбуждения гелия. На концах трубки под углом Брюстера расположены окна, благодаря которым излучение оказывается плоскополяризованным. Плоскопараллельные зеркала резонатора монтируются вне трубки, одно из них полупрозрачное (коэффициент отражения R < 100%). Таким образом, пучок вынужденного излучения выходит наружу через полупрозрачное зеркало. Это лазер непрерывного действия.

Зеркала резонатора делают с многослойными покрытиями, и вследствие интерференции создается необходимый коэффициент отражения для заданной длины волны. Чаще всего используются гелий-неоновые лазеры, излучающие красный свет с длиной волны 632,8 нм. Мощность таких лазеров небольшая, она не превышает 100 мВт.

Применение лазеров основано на свойствах их излучения: высокая монохроматичность (~ 0,01 нм), достаточно большая мощность, узость пучка и когерентность.

Узость светового пучка и малая его расходимость позволили использовать лазеры для измерения расстояния между Землей и Луной (получаемая точность -- около десятков сантиметров), скорости вращения Венеры и Меркурия и др.

На когерентности лазерного излучения основано их применение в голографии. .На основе гелий-неонового лазера с использованием волоконной оптики разработаны гастроскопы, которые позволяют голографически формировать объемное изображение внутренней полости желудка.

Монохроматичность лазерного излучения очень удобна при возбуждении спектров комбинационного рассеяния света атомами и молекулами.

Широкое применение лазеры нашли в хирургии, стоматологии, офтальмологии, дерматологии, онкологии. Биологические эффекты лазерного излучения зависят как от свойств биологического материала, так и от свойств лазерного излучения.

Все лазеры, используемые в медицине, условно подразделяются на 2 вида: низкоинтенсивные (интенсивность не превышает 10 Вт/см 2 , чаще всего составляет около 0,1 Вт/см 2) -- терапевтические и высокоинтенсивные -- хирургические. Интенсивность наиболее мощных лазеров может достигать 10 14 Вт/см 2 , в медицине обычно используются лазеры с интенсивностью 10 2 -- 10 6 Вт/см 2 .

Низкоинтенсивные лазеры -- это такие, которые не вызывают заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра их эффекты обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных, некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечивающими точную локализацию и дозированность воздействия. Примерами может служить использование света гелий-неоновых лазеров для лечения трофических язв, ишемической болезни сердца и др., а также криптоновых и др. лазеров для фотохимического повреждения опухолей в фотодинамической терапии.

Качественно новые явления наблюдаются при использовании видимого или ультрафиолетового излучения высокоинтенсивных лазеров. В лабораторных фотохимических экспериментах с обычными источниками света, а также в природе при действии солнечного света обычно осуществляется однофотонное поглощение. Об этом говорится во втором законе фотохимии, сформулированном Штарком и Эйнштейном: каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. Однофотонность поглощения, описываемая вторым законом, выполняется потому, что при обычных интенсивностях света практически невозможно одновременное попадание в молекулу, находящуюся в основном состоянии, двух фотонов. Если бы такое событие осуществилось, то выражение приобрело бы вид:

2hv = E t - E k ,

что означало бы суммирование энергии двух фотонов для перехода молекулы из энергетического состояния E k в состояние с энергией Е г. Не происходит также поглощения фотонов электронно-возбужденными молекулами, так как их время жизни мало, а обычно используемые интенсивности облучения невелики. Поэтому концентрация электронно-возбужденных молекул низка, и поглощение ими еще одного фотона чрезвычайно маловероятно.

Однако если увеличить интенсивность света, то становится возможным двухфотонное поглощение. Например, облучение растворов ДНК высокоинтенсивным импульсным лазерным излучением с длиной волны около 266 нм приводило к ионизации молекул ДНК, подобной вызываемой у-излучением. Воздействие ультрафиолета с низкой интенсивностью ионизации не вызывало. Установлено, что при облучении водных растворов нуклеиновых кислот или их оснований пикосекундными (длительность импульса 30 пс) или наносекундными (10 нс) импульсами с интенсивностями выше 10 6 Вт/см 2 приводило к электронным переходам, завершавшимся ионизацией молекул. При пикосекундных импульсах (рис. 4, а) заселение высоких электронных уровней происходило по схеме (S 0 --> S1 --> S n), а при hv hv наносекундных (рис. 4., б) -- по схеме (S 0 --> S1 -> Т г -> Т п). В обоих случаях молекулы получали энергию, превышающую энергию ионизации.

Полоса поглощения ДНК располагается в ультрафиолетовой области спектра при < 315 нм, видимый свет нуклеиновые кислоты совсем не поглощают. Однако воздействие высокоинтенсивным лазерным излучением около 532 нм переводит ДНК в электронно-возбужденное состояние за счет суммирования энергии двух фотонов (рис. 5).

Поглощение любого излучения приводит к выделению некоторого количества энергии в виде тепла, которое рассеивается от возбужденных молекул в окружающее пространство. Инфракрасное излучение поглощается главным образом водой и вызывает в основном тепловые эффекты. Поэтому излучение высокоинтенсивных инфракрасных лазеров вызывает заметное немедленное тепловое действие на ткани. Под тепловым воздействием лазерного излучения в медицине понимают в основном испарение (резание) и коагуляцию биотканей. Это касается различных лазеров с интенсивностью от 1 до 10 7 Вт/см 2 и с продолжительностью облучения от миллисекунд до нескольких секунд. К ним относятся, например, газовый С0 2 -лазер (с длиной волны 10,6 мкм), Nd:YAG-лазep (1,064 мкм) и другие. Nd:YAG-лазep -- наиболее широко исполь-зуемый твердотельный четырехуровневый лазер. Генерация осуществляется на переходах ионов неодима (Nd 3+),введенных в кристаллыY 3 Al 5 0 12 иттрий-алюминиевого граната (YAG).

Наряду с нагревом ткани происходит отвод части тепла за счет теплопроводности и тока крови. При температурах ниже 40 °С не обратимые повреждение не наблюдаются. При температуре 60 °С начинается денатурация белков, коагуляция тканей и некроз. При 100- 150 °С вызывается обезвоживание и обугливание, а при температурах свыше 300 °С ткань испаряется.

Когда излучение исходит от высокоинтенсивного сфокусированного лазера, количество выделяющегося тепла велико, в ткани возникает температурный градиент. В месте падения луча ткань испаряется, в прилегающих областях пронсходит обугливание и коагуляция (рис. 6). Фотоиспарение является способом послойного удаления или разрезания ткани. В результате коагуляции завариваются сосуды и останавливается кровотечение. Так сфокусированным лучом непрерывного С0 2 -лазера () с мощностью около 2 * 10 3 Вт/см 2 пользуются как хирургическим скальпелем для разрезания биологических тканей.

Если уменьшать длительность воздействия (10 - 10 с) и увеличивать интенсивность (выше 10 6 Вт/см 2), то размеры зон обугливания и коагуляции становятся пренебрежимо малыми. Такой процесс называют фотоабляцией (фотоудалением) и используют для послойного удаления ткани. Фотоабляция возникает при плотностях энергии 0,01--100 Дж/см 2 .

При дальнейшем повышении интенсивности (10 Вт/см и выше) возможен еще один процесс -- «оптический пробой». Это явление заключается в том, что из-за очень высокой напряженности электрического поля лазерного излучения (сравнимой с напряженностью внутриатомных электрических полей) материя ионизации, образуется плазма и генерируются механические ударные волны. Для оптического пробоя не требуется поглощения квантов света веществом в обычном смысле, он наблюдается прозрачных средах, например в воздухе.

лазер глаз медицина зрение

Лазеры, применяемые в медицине

С практической точки зрения, особенно для использования в медицине, лазеры классифицируют по типу активного материала, по способу питания, длине волны и мощности генерируемого излучения.

Активной средой может быть газ, жидкость или твердое тело. Формы активной среды также могут быть различными. Чаще всего для газовых лазеров используются стеклянные или металлические цилиндры, заполненные одним или несколькими газами. Примерно так же обстоит дело и с жидкими активными средами, хотя часто встречаются прямоугольные кюветы из стекла или кварца. Жидкостные лазеры -- это лазеры, в которых активной средой являются растворы определенных соединений органических красителей в жидком растворителе (воде, этиловом или метиловом спиртах и т.п.).

В газовых лазерах активной средой являются различные газы, их смеси или пары металлов. Эти лазеры разделяются на газоразрядные, газодинамические и химические. В газоразрядных лазерах возбуждение осуществляется электрическим разрядом в газе, в газодинамических -- используется быстрое охлаждение при расширении предварительно нагретой газовой смеси, а в химических -- активная среда возбуждается за счет энергии, освобождающейся при химических реакциях компонентов среды. Спектральный диапазон газовых лазеров значительно шире, чем у всех остальных типов лазеров. Он перекрывает область от 150 нм до 600 мкм.

Эти лазеры имеют высокую стабильность параметров излучения по сравнению с другими типами лазеров.

Лазеры на твердых телах имеют активную среду в форме цилиндрического или прямоугольного стержня. Таким стержнем чаще всего является специальный синтетический кристалл, например рубин, александрит, гранат или стекло с примесями соответствующего элемента, например эрбия, гольмия, неодима. Первый действующий лазер работал на кристалле рубина.

Разновидностью активного материала в виде твердого тела являются также полупроводники. В последнее время благодаря своей малогабаритности и экономичности полупроводниковая промышленность очень бурно развивается. Поэтому полупроводниковые лазеры выделяют в отдельную группу.

Итак, соответственно типу активного материала выделяют следующие типы лазеров:

Газовые;

Жидкостные;

На твердом теле (твердотельные);

Полупроводниковые.

Тип активного материала определяет длину волны генерируемого излучения. Различные химические элементы в разных матрицах позволяют выделить сегодня более 6000 разновидностей лазеров. Они генерируют излучение от области так называемого вакуумного ультрафиолета (157 нм), включая видимую область (385-760 нм), до дальнего инфракрасного (> 300 мкм) диапазона. Все чаще понятие "лазер", вначале данное для видимой области спектра, переносится также на другие области спектра.

Таблица 1 - лазеры применяемые в медицине.

Тип лазера

Агрегатное состояние активного вещества

Длина волны, нм

Диапазон излучения

Инфракрасный

YAG:Er YSGG:Er YAG:Ho YAG:Nd

Твердое тело

2940 2790 2140 1064/1320

Инфракрасный

Полупроводниковый, например арсенид галлия

Твердое тело (полупроводник)

От видимого до инфракрасного

Рубиновый

Твердое тело

Гелий-неоновый (He-Ne)

Зеленый, ярко-красный, инфракрасный

На красителях

Жидкость

350-950 (перестраиваемая)

Ультрафиолет - инфракрасный

На парах золота

На парах меди

Зеленый/желтый

Аргоновый

Голубой, зеленый

Эксимерный: ArF KrF XeCI XeF

Ультрафиолет

Например, для более коротковолнового излучения, чем инфракрасное, используется понятие "рентгеновские лазеры", а для более длинноволнового, чем ультрафиолетовое, -- понятие "лазеры, генерирующие миллиметровые волны"

В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 632,8 нм (нм = 10~9 м) видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров. Все газовые лазеры довольно похожи по конструкции и свойствам.

Например, С02-газовый лазер излучает длину волны 10,6 мкм в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера -- 488 и 514 нм.

Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Одним из примеров является неодим (Кё)-лазер. Термин АИГ является сокращением для кристалла -- алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1,064 мкм. Вспомогательные устройства, которые могут быть как внутренними, так и внешними по отношению к резонатору, могут использоваться для преобразования выходного луча в видимый или ультрафиолетовый диапазон. В качестве лазерных сред могут использоваться различные кристаллы с разными концентрациями ионов-активаторов: эрбия (Ег3+), гольмия (Но3+), тулия (Тт3+).

Выберем из этой классификации лазеры, наиболее пригодные и безопасные для медицинского использования. К более известным газовым лазерам, используемым в стоматологии, относятся С02-лазеры, He-Ne-лазеры (гелий-неоновые лазеры). Представляют интерес также газовые эксимерные и аргоновые лазеры. Из твердотельных лазеров наиболее популярным в медицине является лазер на YAG:Er, имеющий в кристалле эрбиевые активные центры. Все чаще обращаются к лазеру на YAG:Ho (с гольмиевыми центрами). Для диагностического и терапевтического применения используется большая группа как газовых, так и полупроводниковых лазеров. В настоящее время в производстве лазеров в качестве активной среды используется свыше 200 видов полупроводниковых материалов.

Таблица 2 - характеристики разнообразных лазеров.

Лазеры можно классифицировать по виду питания и режиму работы. Здесь выделяются устройства непрерывного или импульсного действия. Лазер непрерывного действия генерирует излучение, выходная мощность которого измеряется в ваттах или милливаттах.

При этом степень энергетического воздействия на биоткань характеризуется:

Плотностью мощности - отношение мощности излучения к площади сечения лазерного пучка р = P/s].

Единицы измерения в лазерной медицине -- [Вт/см 2 ], [мВт/см 2 ];

Дозой излучения П, равной отношению произведения мощности излучения [Р и времени облучения к площади сечения лазерного пучка. Выражается в [Вт * с/см 2 ];

Энергией [Е= Рt] -- произведение мощности на время. Единицы измерения -- [Дж], т.е. [Вт с].

С точки зрения мощности излучения (непрерывной или средней) медицинские лазеры делятся на:

Лазеры малой мощности: от 1 до 5 мВт;

Лазеры средней мощности: от 6 до 500 мВт;

Лазеры большой мощности (высокоинтенсивные): более 500 мВт. Лазеры малой и средней мощности причисляют к группе так называемых биостимулирующих лазеров (низкоинтенсивных). Биостимулирующие лазеры находят все более широкое терапевтическое и диагностическое использование в экспериментальной и клинической медицине.

С точки зрения режима работы лазеры делятся на:

Режим излучения непрерывный (волновые газовые лазеры);

Режим излучения смешанный (твердотельные и полупроводниковые лазеры);

Режим с модуляцией добротности (возможен для всех типов лазеров).

В медицине лазеры нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:

Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

Особенно широкое применение нашли лазерные инструменты в хирургии глаза. Глаз, как известно, представляет орган, обладающий очень тонкой структурой. В хирургии глаза особенно важны точность и быстрота манипуляций. Кроме того выяснилось, что при правильном подборе частоты излучения лазера оно свободно проходит через прозрачные ткани глаза, не оказывая на них никакого действия. Это позволяет делать операции на хрусталике глаза и глазном дне, не делая никаких разрезов вообще. В настоящее время успешно проводятся операции по удалению хрусталика путём испарения его очень коротким и мощным импульсом. При этом не происходит повреждение окружающих тканей, что ускоряет процесс заживления, составляющий буквально несколько часов. В свою очередь, это значительно облегчает последующую имплантацию искусственного хрусталика. Другая успешно освоенная операция – приваривание отслоившейся сетчатки.


Лазеры довольно успешно применяются и в лечении таких распространённых сейчас заболеваний глаза как близорукость и дальнозоркость. Одной из причин этих заболеваний является изменение в силу каких-либо причин конфигурации роговицы глаза. С помощью очень точно дозированных облучений роговицы лазерным излучением можно исправить её изъяны, восстановив нормальное зрение.

Трудно переоценить значение применения лазерной терапии при лечении многочисленных онкологических заболеваний, вызванных неконтролируемым делением видоизменённых клеток. Точно фокусируя луч лазера на скоплении раковых клеток, можно полностью уничтожить эти скопления, не повреждая здоровые клетки.

Разнообразные лазерные зонды широко используются при диагностике заболеваний различных внутренних органов, особенно в тех случаях, когда применение других методов невозможно или сильно затруднено.

В лечебных целях применяется низкоэнергетическое лазерное излучение. В основе лазеротерапии лежит сочетание воздействия на организм импульсного широкополосного излучения ближнего инфракрасного диапазона совместно с постоянным магнитным полем. В основе терапевтического (лечебного) эффекта лазерного излучения с живым организмом лежат фотофизические и фотохимические реакции. На клеточном уровне в ответ на действие лазерного излучения изменяется энергетическая активность клеточных мембран, происходит активизация ядерного аппарата клеток системы ДНК – РНК – белка, а, следовательно, увеличение биоэнергетического потенциала клеток. Реакция на уровне организма в целом выражается в клинических проявлениях. Это обезболивающий, противовоспалительный и противоотечный эффекты, улучшение микроциркуляции не только в облучаемых, но и в окружающих тканях, ускорение заживления поврежденной ткани, стимуляция общих и местных факторов иммунозащиты, снижение в крови холецистита, бактериостатический эффект.

Похожие публикации